ST BENEDICT'S COLLEGE

SUBJECT	AP Mathematics Paper 1		18 JULY 2017
GRADE	12	MARKS	200
EXAMINER	Mrs MH Povall	MODERATORS	Mrs H Rademeyer Mr N Benecke
NAME TEACHER		DURATION	2.5 Hours

READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

QUESTION NO	DESCRIPTION	MAXIMUM MARK	ACTUAL MARK
1	Continuity and Differentiability	17	
2	Algebra	44	
3	Sectors and Segments	12	
4	Limits and function notation	13	
5	Newton's Method	10	
6	Differentiation	40	
7	Methods of Integration	30	
8	Graphs of rational functions	24	
9	Problem Solving	10	
TOTAL		200	

- 1. This question paper consists of 10 pages and a formula sheet is supplied.
- 2. Read the questions carefully.
- 3. All the necessary working details must be clearly shown.
- 4. Approved non-programmable calculators may be used except where otherwise stated.
- 5. It is in your own interest to write legibly and to present your work neatly.
- 6. Where necessary, round off to four decimal places.

QUESTION 1 44 MARKS

a) Given: $f(x) = 2^x$

Sketch the following curves on the same system of axes:

$$1) f(x) (2)$$

$$2) f(x-2) (2)$$

3)
$$f^{-1}(x)$$
 and state the equation of $f^{-1}(x)$ (3)

b) 1) Simplify
$$\frac{3+4i}{3-2i}$$
 without the use of a calculator. (4)

2) Solve for x:

$$x^4 - 2x^3 - 4x^2 + 6x + 3 = 0$$
 if it is given that $1 + \sqrt{2}$ is a zero of $f(x)$.

(7)

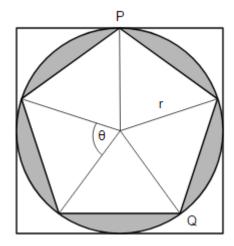
c) Solve for x:

1)
$$3 + 4x = 3 \left| x - \frac{1}{2} \right|$$
 (6)

$$2) \qquad \frac{6x+1}{(2x-3)} \ge 1 \tag{6}$$

3)
$$log_{0,1}(x-20) + log2x = 1$$
 (6)

d) Resolve
$$\frac{4x^2-5x+3}{x^3-2x^2+x}$$
 into partial fractions. (8)


QUESTION 2 44 MARKS

a) Find the values of a and b if f(x) is continuous for all values of x and

$$f(x) = \begin{cases} ax + b & \text{if } x < 2\\ a^2 + 6 & \text{if } x = 2\\ bx - a & \text{if } x > 2 \end{cases}$$
 (7)

- b) Draw separate sketch graphs of each of the following five functions:
 - 1) a function f such that f is continuous but not differentiable at x=2.
 - 2) a function g such that $\lim_{x\to 2} g(x)$ exists, but g is not continuous at x=2.
 - 3) a function h such that $\lim_{x\to 2} h(x)$ does not exist.
 - 4) a function k such that k'(2) = 0.
 - 5) a function p such that p''(2) = 0. (10)

QUESTION 3 12 MARKS

The pattern above is painted on a square piece of wood. It is designed in the form of a regular pentagon, which is inscribed in a circle as shown. The total shaded area measures 20cm^2 .

Determine the following values, correct to one decimal:

a) the radius r (6)

b) the area of the piece of wood (3)

c) the length of the major arc PQ (3)

QUESTION 4 13 MARKS

a) Evaluate the following without using a calculator:

1)
$$\lim_{x \to 3} \frac{x^3 - 27}{3 - x} \tag{3}$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x} \tag{5}$$

b) Given:
$$f(x) = \sqrt{x-4}$$
 and $g(x) = x^2 - 2$

1) Determine
$$f \circ g(x)$$
. (2)

2) Determine the domain of
$$f \circ g(x)$$
. (3)

QUESTION 5 10 MARKS

Given: y = 1 + x and y = 2tanx

- 1) Create a function f(x) that can be used to find the x value of the point of intersection of the two graphs. (2)
- 2) Show that f(x) = 0 has a solution in the interval [0; 1] (3)
- Calculate the x value of the point of intersection of the two graphs in the interval [0; 1]. Round off to four decimal places. (5)

QUESTION 6 40 MARKS

a)	Determine the gradient of the function $p(x) = \sqrt{3x}$ at any point by using first	
	principles.	(6)

b) Determine the following derivatives: Do not simplify your answers fully.

$$1) D_x \left[\frac{x^2}{\sqrt{2x+3}} \right] (6)$$

2)
$$D_x \left[(3x^4 - 10x)^{15} \cdot \sqrt{4x^4 + 64} \right]$$
 (8)

$$3) \qquad \frac{d}{dx} \sin^2(3x - 4) \tag{4}$$

4)
$$\frac{d}{dx}\tan(3x-4)^2$$
 (4)

c) Determine the formula for the n-th derivative of
$$f(x) = \frac{1}{4x - 3}$$
. (5)

d) Find the gradient of the tangent to
$$y^2 - 5xy + 8x^2 = 7$$
 at the point $(1; 2)$. (7)

QUESTION 7 30 MARKS

Determine each of the following integrals:

a)
$$\int \left(\sqrt{x} + \frac{1}{5x}\right)^2 dx \tag{6}$$

b)
$$\int (x+2)\sqrt{x^2+4x+5} \, dx$$
 (6)

c)
$$\int sec^2(3x-1).tan(3x-1) dx$$
 (5)

d)
$$\int \sin^2 4x \ dx \tag{6}$$

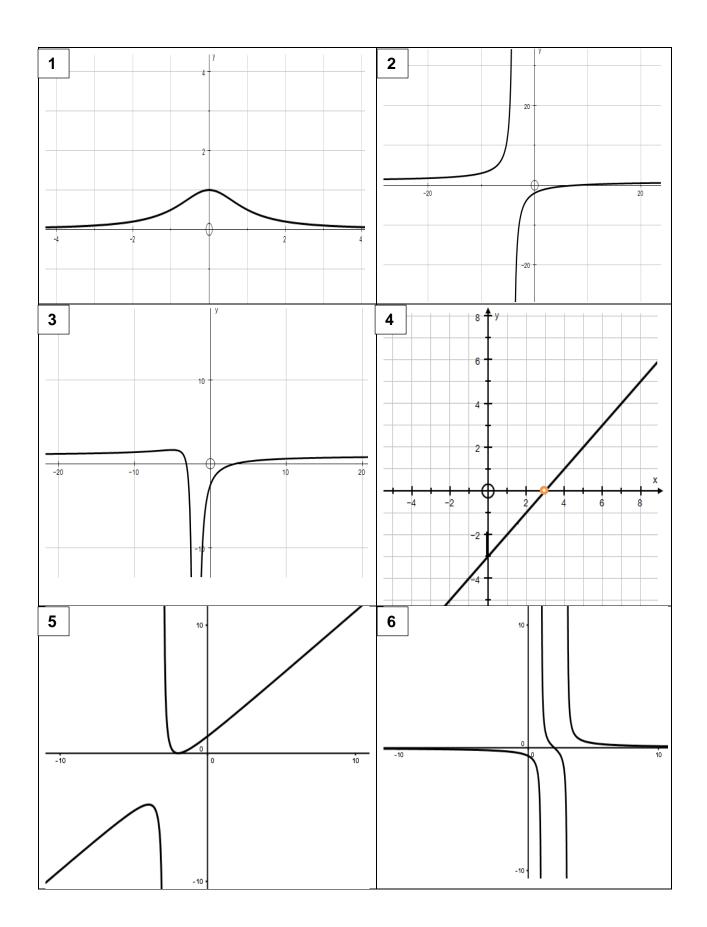
e)
$$\int x.\sin 4x \ dx$$
 (7)

QUESTION 8 24 MARKS

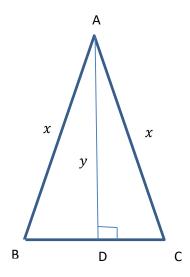
Match each of the following functions with the curves sketch alongside. Motivate your answer by referring to the asymptotes and the degrees of the expressions.

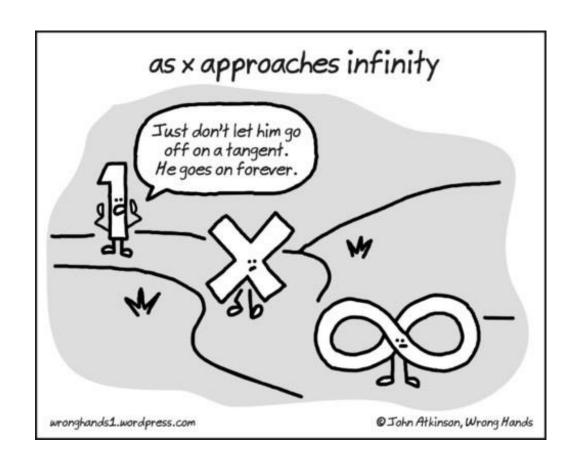
a)
$$f(x) = \frac{x-2}{x^2-4x+3}$$

b)
$$f(x) = \frac{x^2 - 6x + 9}{x - 3}$$


c)
$$f(x) = \frac{x^2 - 10}{x^2 + 4x + 4}$$

d)
$$f(x) = \frac{x-8}{x+4}$$


e)
$$f(x) = \frac{1}{1+x^2}$$


f)
$$f(x) = \frac{x^2 + 4x + 4}{x + 3}$$

$$6 \times 4 = 24$$

If the perimeter of an isosceles triangle ABC is 18cm, calculate the maximum area of the triangle.

