

# KEARSNEY COLLEGE TRIAL EXAMINATION 29 AUGUST 2018

## ADVANCED PROGRAMME MATHEMATICS: PAPER I

**MODULE 1: CALCULUS AND ALGEBRA** 

Time: 2 hours 200 marks

#### PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. This question paper consists of 6 pages and an Information Sheet. Please check that your question paper is complete.
- 2. Non-programmable and non-graphical calculators may be used, unless otherwise indicated.
- 3. All necessary calculations must be clearly shown and writing should be legible.
- 4. Diagrams have not been drawn to scale.
- 5. Round off your answers to two decimal digits, unless otherwise indicated.
- 6. Ensure that your calculators are set to **RADIAN** mode.

Solve for x:

1.1 
$$\ln(4-2x) + \ln(9-3x) = 2\ln(x+1)$$
;  $-1 < x < 2$  (6)

1.2 
$$e^{3x+1} = 10$$
 (5)

[11]

#### **QUESTION 2**

The function  $f(x) = \begin{cases} 2 & ; x \le -1 \\ ax + b & ; -1 < x < 2 \text{ where } a \text{ and } b \text{ are constants, is continuous for } \\ 5 & ; x > 2 \end{cases}$  $x \in \mathbb{R}$ .

- 2.1 Determine the values of a and b. (5)
- 2.2 If a = 1 and b = 3, sketch the graph of f on the axes on the diagram sheet. (4)

2.3 Determine 
$$\lim_{h \to 0} \frac{f(2+h)-f(2)}{h}$$
 if  $h > 0$ . (3)

2.4 Determine whether f is differentiable at x = 2. (4)

[16]

#### **QUESTION 3**

 $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3} \quad \text{for } n \in \mathbb{N}.$ Use mathematical induction to prove that

[8]

#### **QUESTION 4**

 $\frac{3x^2-x+1}{x(x+1)^2}$ Resolve into partial fractions [6]

5.1 Given: 
$$u = p + 2i$$
 and  $v = 1 - 2i$ 

Determine 
$$\frac{u}{v}$$
 in the form  $a + bi$ , in terms of  $p$ . (5)

5.2 Determine the values of 
$$x$$
 and  $y$  if  $x(1+i)^2 + y(2-i)^2 = 3 + 10i$  (6)

One solution to the equation 
$$x^3 + ax^2 + bx - 6 = 0$$
 is  $1 + i$ .  
Calculate the values of  $a$  and  $b$  respectively for  $a, b \in \mathbb{Q}$ .

[17]

#### **QUESTION 6**

Given: 
$$f(x) = |2^x - 6|$$

Sketch the graph of 
$$f$$
 on the axes given. (5)

6.2 Hence or otherwise solve for 
$$x$$
 if  $f(x) < 2$  (5)

[10]

#### **QUESTION 7**

Determine the derivative in each case. You do not need to simplify your answers.

$$7.1 y = \frac{x^2}{x - 4} (4)$$

7.2 
$$f(x) = \sqrt[3]{x^2 + \sqrt{x^3}}$$
 (5)

$$7.3 y = \cos x \cdot \sin x \cdot \tan x (4)$$

[13]

$$8.1 \qquad \lim_{x \to 1} \frac{x^3 - 1}{x - 1} \tag{4}$$

8.2 Let 
$$f(x) = \frac{x}{(6x+4)^{\frac{2}{3}}}$$
. Determine the value of  $x$  for which  $f'(x) = 0$ . (7)

8.3 If 
$$f(x) = \sqrt{x-1}$$
 and  $g(x) = (x^2 + 1)^2$ , determine  $f \circ g(x)$  (4)

[15]

#### **QUESTION 9**

A curve has the equation  $x^3 + xy + y^3 + 29 = 0$ 

9.1 Verify that the point 
$$P(1; -3)$$
 is a stationary point of the curve. (5)

9.2 Determine whether the curve has a maximum or a minimum at P by finding the value of  $\frac{d^2y}{dx^2}$ . (9)

[14]

#### **QUESTION 10**

It is given that:  $g(x) = \frac{3x^2 + x - 2}{x^2 + mx - 2}$ 

10.1 Factorise 
$$3x^2 + x - 2$$
. (1)

10.2 For which value(s) of m will the graph of g have:

(a) one 
$$x$$
 –intercept (5)

10.3 If 
$$m = -1$$
, determine the asymptotes of  $g$ . (4)

10.4 Given m = 1

(a) Solve for 
$$g(x) < 0$$
 (6)

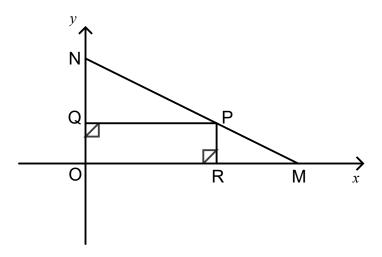
(b) Sketch the graph of g on the axes provided on the diagram sheet. Show all intercepts with the axes and asymptotes. It is not necessary to determine the stationary points. (7)

[25]

#### **QUESTION 11**

Determine the following integrals. Show all working details.

$$11.1 \qquad \int \cos 5x \cdot \cos 8x \tag{6}$$


$$11.2 \qquad \int \sin^2 x \cdot \sec^4 x \ dx \tag{7}$$

11.3 
$$\int t\sqrt{1+2t} \ dt \qquad (Let \ u = 1+2t)$$
 (7)

[20]

#### **QUESTION 12**

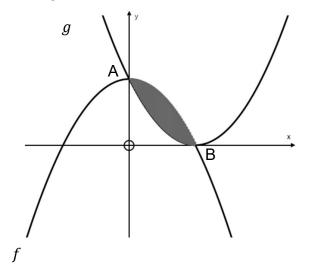
A farmer has a piece of land in the shape of a right-angled triangle OMN, as shown in the diagram below. He allocated a rectangular piece of land PQOR to his daughter. He gives her the freedom to place a peg at P(x; y) anywhere on the boundary on MN to create the rectangular plot of land. Let ON = a and OM = b.



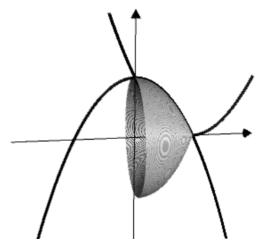
12.1 Determine the equation of MN in terms of a and b. (3)

Show that the rectangular piece of land would be a maximum area when the peg is placed at the midpoint of MN. (6)

[9]


Consider the function  $k(x) = 2x - \sec x$ 

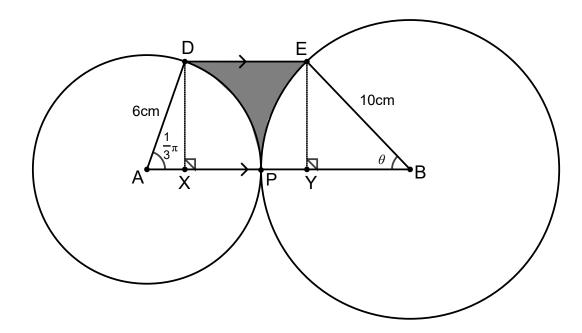
Use Newton's method to solve the equation  $2x = \sec x$  in the interval  $x \in [0; 1]$ . Round off your answer to 4 decimal digits.


[8]

#### **QUESTION 14**

The graphs of  $f(x) = 1 - x^2$  and  $g(x) = (x - 1)^2$  are drawn in the sketch below.




- 14.1 Determine the coordinates of points A and B.
- Determine the volume of the solid produced when the shaded area is rotated about the x –axis. (10)



[16]

(6)

The diagram shows circle centre A touching circle centre B at P. Circle centre A has a radius of 6cm while circle centre B has a radius of 10cm. Points D and E lie on the circumference of their respective circles such that DE || AB.  $D\hat{A}P = \frac{1}{3}\pi$  radians and  $E\hat{B}P = \theta$ . AB is a horizontal line.



15.1 Show that  $\theta = 0.5464$  radians. (4)

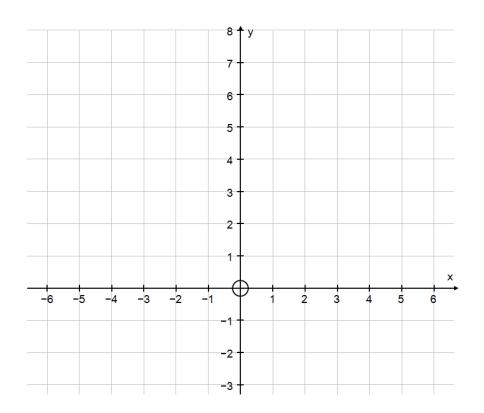
Determine the perimeter of the shaded region DEP, round off your answer to 4 decimal places. (8)

[12]

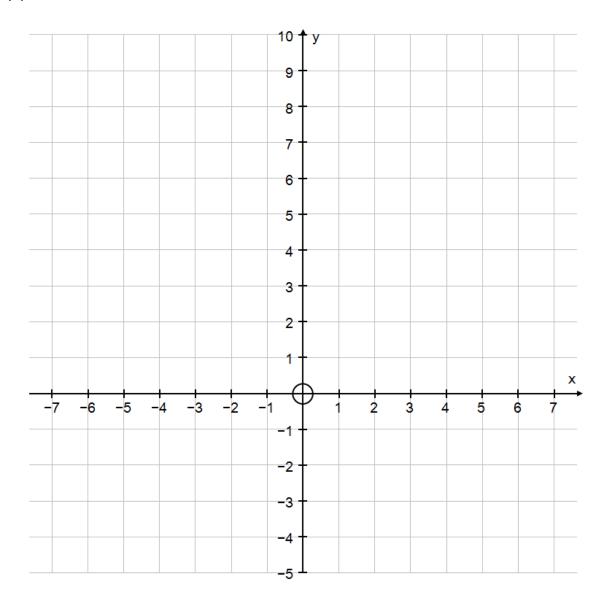
# **Diagram Sheet**

## **EXAMINATION NUMBER**

| 1 | 8 | 1 | 0 | 6 | 8 | 0 | 2 |  |  |
|---|---|---|---|---|---|---|---|--|--|
|   |   |   |   |   |   |   |   |  |  |


## **QUESTION 2**

2.2




## **QUESTION 6**

6.1



## 10.4 (b)

