

Hyde Park High School September 2019

GRADE 12 AP Mathematics

Paper 1 – Algebra and Calculus

Time: 2 hours		200 marks
Exam Number:		

Please hand in question paper together with your folio paper.

Staple question paper on top of your folio paper. Start a new page for each question.

Please read the following instructions carefully

- 1. This question paper consists of 12 questions on 5 pages and a separate formula sheet. Please check that your question paper is complete. Answer all questions on the folio paper provided.
- 2. Read the questions carefully.
- 3. Non-programmable calculators may be used. Ensure that you are in RAD mode when necessary.
- 4. It is in your own interest to write legibly and to present your work neatly.

Question	1	2	3	4	5	6	7	8	9	10	11	12	Total
Out of	18	13	15	12	14	14	11	21	30	8	22	22	200
Mark Achieved													

Examiner : K Raeburn

Question One [18 marks]

Solve for the variable in each case. Leave answers in terms of e or ln if necessary.

1.1
$$f(x) = e^{kx+2}$$
 if $f(1) = 3$ (4)

$$1.2 \quad 6e^{x+2} - 3 = 0 \tag{4}$$

1.3
$$\ln(x^{\ln x}) = \ln(e^2.x)$$
 (10)

Question Two [13 marks]

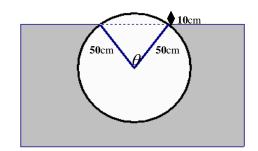
Given: f(x) = x|x-1|

2.1 Calculate
$$f(-3)$$
 (3)

2.2 Write the function as a piecewise defined function (i.e step function)

2.3 Now sketch the graph of
$$y = f(x)$$
 (4)

Question Three [15 marks]


Prove the following statement using Mathematical induction:

$$5^n + 12n - 1$$
 is divisible by 16 for all $n \in \mathbb{N}$ (15)

Question Four [12 marks]

The diagram shows the **cross-section** of a wooden log, of radius 50 cm, floating in water.

Part of the log is exposed above the water.

At the **highest point**, 10cm of the log is out of the water.

The angle θ is the angle made between the two radii at this point.

4.1 Show that
$$\theta = 1,287$$
 radians. Show all your working. (4)

4.2 Calculate the area of the cross- section of the log that is **below** the water, correct to 2 decimal places. (8)

Question Five [14 marks]

Given:
$$f(x) = \begin{cases} -x^2 + ax + 3 & ; x < 0 \\ |x - b| & ; x \ge 0 \end{cases}$$

- 5.1 Determine the values of a and b if f is **differentiable** at x = 0 and b > 0. (8)
- 5.2 If the values of a and b are given as -2 and 2 respectively, determine what type of discontinuity occurs at the values of x = 0. Show all calculations. (6)

Question Six [14 marks]

Determine the limits of each of the following – if they exist.

$$6.1 \quad \lim_{\theta \to 0} \frac{\theta}{5\tan(3\theta)} \tag{4}$$

6.2
$$\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}$$
 (6)

6.3
$$\lim_{x \to \infty} \frac{x^2 + 1}{2 - 3x - 4x^2} \tag{4}$$

Question Seven [11 marks]

Given:
$$f(2)=3$$
 ; $g(2)=-4$, $f^{\prime}(2)=-2$, $g^{\prime}(2)=7$ and $f^{\prime}(-4)=3$

Determine h'(2) if :

7.1
$$h(x) = \frac{g(x)}{f(x)}$$
 (6)

7.2
$$h(x) = f(g(x))$$
 (5)

Question Eight [21 marks]

8.1 If
$$y = \frac{3-x}{x+2}$$
, determine $\frac{dy}{dx}$. (5)

8.2 Determine the derivative of
$$f(x) = (3 - 4x^2)^3 sin2x$$
 (5)

8.3 If
$$e^y = \ln(x + 2y) + x$$
, determine $\frac{dy}{dx}$ at the point (1;0) (11)

Question Nine [30 marks]

Determine the following.

$$9.1 \quad \int \cos^8 x \cdot \sin x \, dx \tag{5}$$

$$9.2 \int e^{tanx} \sec^2 x \, dx \tag{5}$$

9.3
$$\int \frac{\sin(\ln x)}{x} dx$$
 (5)

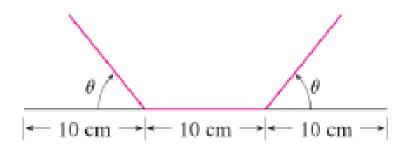
9.4
$$\int \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x} dx \text{ using partial fractions.}$$
 (15)

Question Ten [8 marks]

Suppose $\int_{1}^{4} f(x)dx = 5$; $\int_{3}^{4} f(x)dx = 7$ and $\int_{1}^{8} f(x)dx = 11$,

determine the value of
$$\int_3^8 (f(x) + 4) dx$$
 (8)

Question Eleven [22 marks]


Given the equation of the graph $f(x) = \frac{x^3-1}{2(x^2-1)}$

- 11.1 Determine the coordinates of the stationary points as well as the intercepts with each of the axes. (10)
- 11.2 State the equations of the asymptotes. (5)
- 11.3 Sketch the graph of f(x). (7)

Question Twelve [22 marks]

- 12.1 At which point(s) on the curve $y = x + 40x^3 3x^5$ does the tangent line have the greatest slope, around the **maximum stationary** point? Hint: think of how the graph looks how many stationary points and where the maximum gradient would most likely occur. (12)
- 12.2 You are required to design a rain gutter from a metal sheet of width 30 cm by bending up one third of the sheet on each side through an angle of θ . What value of θ should be used so that the gutter will carry **maximum amount of water?** Justify all your responses with calculus and trigonometry (radian measure).

Hint : determine the equation of the trapezium in terms of θ . Answer correct to 3 decimal places. (10)

