# Question 1 [9 marks]

a) Given that  $x = 1 - \sqrt{5}$  and  $x = 1 + \sqrt{5}$  are roots of the equation

$$x^4 - 6x^2 - 12x - 8 = 0$$

b) If 
$$\frac{a+bi}{i} = 3 + 5i$$
;  $a, b \in R$  evaluate  $a^2 - b^2$  (4)

# Question 2 [14 marks]

Solve for x

a) 
$$|x|^2 - |x| - 12 = 0$$
 (4)

b) 
$$|x-2| > x^2$$
 (5)

c) Sketch the graph of 
$$y = |x + 4| - 2$$
 (use the axes below) (5)



#### Question 3 [13 marks]

a) Solve for 
$$x$$
 (show all working)  $\ln(e^{2x} - 12) = x$  (5)

b) If  $f(x) = \ln(x-1) + 2$  and  $g(x) = e^{x-2} + 1$  determine g(f(x)) and state its Domain and Range. (8)

## Question 4 [14 marks]

Use Mathematical Induction to prove

$$logx + 2 logx + 3 logx + ... + n logx = \frac{n}{2} logx^{n+1}$$
 Where n  $\in$  N ; x > 0 (14)

#### Question 5 [6 marks]

Given 
$$f(x) = \begin{cases} ax + b + 1 & if \ x < -1 \\ ab & if \ x = -1 \\ x - 3b & if \ x > -1 \end{cases}$$

Determine the values of a and b such that f is continuous for all values of x (6)

#### Question 6 [10 marks]

a) A cubic function  $y = ax^3 + bx^2 + cx$  has a gradient of - 3 at the origin, and has a point of inflection at (2; -22).

Determine the values of 
$$a$$
;  $b$  and  $c$  (10)

## Question 7 [6 marks]

a) Consider the equation  $x^2 = 3$ 

Use Newton–Rhapson method to the calculate the value of  $\sqrt{3}$  (5)

Start with  $a_1=2$  as your first approximation and show your working to calculate  $a_2$ , then work until correct to 5 decimal places

b) Explain what will happen if you chose  $a_1 = -1$  (1)

## Question 8 [16 marks]

a)



In the diagram, OCD is an isosceles triangle with OC = OD and  $\hat{COD} = 0.8$  radians. The points A and B, on OC and OD respectively, are joined by an arc of a circle with centre O and radius 6 cm. Find:

i) The area of the shaded region. (4)

ii) The perimeter of the shaded region. (4)

b) Evaluate the following limits

i) 
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{\cos x - \sin x}$$
 (4)

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{\sin x}{\sin 3x} \tag{4}$$

#### Question 9 [15 marks]

Differentiate with respect to x (do not leave answers with negative exponents)

a) 
$$g(x) = \sqrt{4x^2 + 1}$$
 (5)

$$b) y = \frac{\sec 2x}{x^2} (6)$$

c) Use implicit differentiation to find 
$$\frac{dy}{dx}$$
 if  $\sin y = \cos x$  (4)

## Question 10 [10 marks]

Given  $x^2 - xy + y^2 = 1$ 

a) show that 
$$\frac{dy}{dx} = \frac{y-2x}{2y-x}$$
 (7)

b) find the equation of the **normal** to 
$$x^2 - xy + y^2 = 1$$
 at the point (1; 0)

a normal is a line perpendicular to the tangent through the point of contact

#### Question 11 [3 marks]

If 
$$y = ln \frac{x+1}{3x-4}$$
 show that  $\frac{dy}{dx} = \frac{1}{x+1} - \frac{3}{3x-4}$  (3)

# Question 12 [26 marks]

$$f(x) = \frac{x^2}{x+1}$$

- a) Find the intercepts with the axes (2)
- b) Find f'(x) and simplify (6)
- c) Determine the turning points of f and classify them as local maxima or minima (6)
- d) Determine all asymptotes for the function (6)
- e) Sketch the graph of y = f(x) on the axes below (6)



(8)

## Question 13 [39 marks]

a) Determine the value(s) of k such that (6)

$$\int_{-1}^{k} (4 - 3x^2) dx = 3$$

b) Determine the following integrals.

i) 
$$\int \sin 3x \cos 3x \, dx \tag{5}$$

$$ii) \qquad \int \frac{1}{1-4x} \, dx \tag{4}$$

iii) 
$$\int \frac{\ln x}{x} dx$$
 (8)

c) Determine A and B if  $\frac{3}{x^2-3x} = \frac{A}{x} + \frac{B}{x-3}$  and hence determine

$$\int \frac{3}{x^2 - 3x} dx$$

d) Use integration by parts to determine  $\int x e^x dx$ 

## Question 14 [6 marks]

The diagram shows the sketch graphs of  $y = \sin x$  and  $y = \cos x$ Without use of a calculator, calculate the shaded area. (6)



## Question 15 [13 marks]

A parabolic cylinder is obtained by revolving the curve  $y=\sqrt{x}$  about the x-axis on the interval  $0 \le x \le 2$  (x is measured in metres)



## Give your answers in terms of $\pi$ and show working

a) The volume is estimated by partitioning the interval [0; 2] into 4 equal sub-intervals with equal width, and the height on the right of the sub-interval as shown

Calculate this estimated volume (7)

b) How could this estimate be improved? (1)

c) Calculate the exact volume (5)

TOTAL = 200