

ADVANCED PROGRAMME MATHEMATICS

GRADE 12

SEPTEMBER 2019

PAPER 1 ALGEBRA AND CALCULUS

TIME: 2 HOURS **MARKS: 200**

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 9 pages and an Information Booklet of 4 pages (i-iv).
- 2. Non-programmable and non-graphical calculators may be used, unless otherwise indicated.
- All necessary calculations must be clearly shown, and writing should be legible. 3.
- 4. Diagrams have not been drawn to scale.
- 5. All angles must be expressed in **RADIANS** rather than degrees.
- 6. Round off your answers to **TWO** decimal digits, unless otherwise indicated.

1.1 Solve for $x \in \mathbb{R}$ without using a calculator:

$$|x|^2 - 4|x| - 12 = 0 ag{6}$$

1.2 By using the laws of logarithms, prove that:

$$\frac{3+\ln x^3}{\ln(ex)}=3\tag{3}$$

1.3 Newton's law of cooling for a liquid, in this case a cup of soup, is given by the equation:

$$T = T_s + (T_0 - T_s)e^{-kt}$$

where

t is the time in minutes

k is a constant for the specified fluid

T is the temperature in $^{\circ}$ C at any given time t

 T_0 is the initial temperature in °C (the value of T at t = 0)

T_s is the surrounding temperature in °C

(a) A cup of soup cooled from 90° C to 60° C in 10 minutes in a room where the temperature was 20° C. Show, by solving for k and showing all working, that

$$k = -\frac{1}{10} \ln \left(\frac{4}{7} \right) \tag{8}$$

(b) Determine the temperature of the soup after 15 minutes (from the beginning). Round your answer off to the nearest whole number. (3) [20]

QUESTION 2

Given an equation of the form $x^2 + bx + c = 0$, with one of its roots x = 2 - 3i.

2.1 If b and c are real numbers, find their values. (6)

2.2 If
$$c = -4 + 19i$$
, determine the value of b , in the form $p + qi$. (10)

Use Mathematical Induction to prove that
$$\sum_{p=1}^{n} \frac{1}{(2p-1)(2p+1)} = \frac{n}{2n+1}$$
 [12]

QUESTION 4

4.1 Given:
$$f(x) = \begin{cases} e^x & \text{if } x < 0 \\ x^2 + 1 & \text{if } 0 \le x < 2 \\ \ln(x - 1) & \text{if } x \ge 2 \end{cases}$$

- (a) Determine whether f is differentiable at x = 0. Show full workings. (6)
- (b) Determine whether f is differentiable at x = 2. Show full workings. (4)
- 4.2 Given: $f(x) = \ln |x|$ and $g(x) = |\ln x|$
 - (a) Sketch the graph of f and g on the same set of axes. (6)
 - (b) For which values of x is f(x) = g(x)? (1) [17]

QUESTION 5

5.1 Determine
$$\frac{dy}{dx}$$
 if $y = e^{2x}$. $\ln 2x$ $(x > 0)$

5.2 Given: $f(x) = \cot x$

(a) Determine
$$f'(x)$$
 and hence show that $f''(x) = \frac{2\cos x}{\sin^3 x}$. (4)

(b) Show that
$$f$$
 has a non-stationary point of inflection at $x = \frac{\pi}{2}$. (5)

5.3 Given:
$$g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1$$

Consider the following statement:

If the second derivative of a function at x = a is equal to zero, then the graph of the function will always have a point of inflection at x = a.

Determine whether this statement is true for the graph of
$$g$$
. (6) [19]

6.1 Determine the equations of the asymptotes of the graphs of the following:

(a)
$$f(x) = \frac{3x^2 - 2x + 1}{4x^2 + 3}$$
 (1)

(b)
$$f(x) = \frac{3x^2 - 2x + 1}{4x^3 + 3}$$
 (1)

(c)
$$f(x) = \frac{3x^2 - 2x + 1}{x + 1}$$
 (3)

6.2 Given:
$$f(x) = \frac{(x+3)(x-4)}{(2x-1)(x-4)}$$

Explain why the graph of f only has one vertical asymptote. (2)

6.3 Given:
$$f(x) = \frac{x}{\ln x}$$

Determine the coordinates of the stationary point on the graph of *f.* (8) [15]

- 7.1 Given: $2x + 3y xy^2 + 4 = 0$
 - (a) Show that $\frac{dy}{dx} = \frac{y^2 2}{3 2xy}$ (5)
 - (b) Determine the equation of the tangent at (-1; -2). (3)
- 7.2 Given: $f(x) = 3\sin 4x$ and $g(x) = \frac{1}{2}(x+1)^2 6$
 - (a) Consider the interval $x \in [0; \frac{\pi}{2}]$ in which f(x) > g(x). Show that the maximum distance between the two graphs in the interval can be obtained by solving the equation

$$12\cos 4x = x + 1.$$
 (4)

- (b) Use Newton-Raphson iteration to write down a recursive equation that can be used to solve the equation in (a). (4)
- (c) Hence, taking x = 0.5 radians as an initial approximation, calculate the solution to the equation, correct to five decimal places. (5) [21]

8.1 Determine:

$$(a) \qquad \int e^{2x+1} \ dx \tag{3}$$

$$\int \frac{4x}{\sqrt{x^2 - 1}} \, dx \tag{6}$$

$$(c) \qquad \int \frac{4x}{x^2 - 1} \, dx \tag{4}$$

- 8.2 (a) Express $\frac{1}{x^3 + x^2}$ in partial fractions in the form $\frac{a}{x} + \frac{b}{x^2} + \frac{c}{x+1}$. (6)
 - (b) Hence determine $\int \frac{1}{x^3 + x^2} dx$.

You may assume that
$$a = -1$$
; $b = 1$ and $c = 1$. (5)

8.3 Use integration by parts to determine
$$\int 2x \cdot e^{3x} dx$$
. (6)

The graph of $y = f(x) = \ln x$ is shown below.

The area enclosed by the graph, the x-axis and the lines x=3 and x=5, can be determined by the Riemann sum formula:

$$A = \lim_{n \to \infty} \Delta x_i \sum_{i=1}^n f(x_i)$$

- 9.1 Write down an expression for Δx_i in terms of n. What does this symbol represent? (2)
- 9.2 What does $f(x_i)$ represent? (1)
- 9.3 Determine an approximation for the area enclosed by the graph, the *x*-axis and the lines x=3 and x=5, by working with the 5 rectangles shown in the diagram. (10)
- 9.4 Calculate, rounded off to three decimal places, the exact enclosed area by using integration. (2)
- 9.5 Is the approximation for the area calculated using the rectangles an over or an under-approximation of the exact area. Explain your answer. (2) [17]

A cylindrical pipe with a diameter of 10 cm and length of 50 cm, is lying on its side and there is water inside to a depth of 2 cm.

- 10.1 Show that the width of the surface of the water (the length of AB) is 8 cm. (4)
- 10.2 Hence find the volume of water in the pipe. (9)

 [13]

11.1 The sketch below shows the graph of $f(x) = \tan x \cdot \sec x$, which cuts the x-axis at 0 and π , and the line y = k, which cuts f at $A\left(\frac{\pi}{3}; k\right)$ and at B.

- (a) Determine the coordinates of A and B. Give the answer in surd form where necessary. (4)
- (b) Write down an expression that can be used to obtain the area of the shaded region, which lies between f, the line y = k and the x-axis. (4)
- (c) Hence, calculate the value of this area. (4)
- 11.2 The graph of f rotates around the x-axis. The volume of the solid of revolution formed between x = 0 and x = a is equal to $\frac{\pi}{3}$.

Determine the value of a. (8) [20]

Total: 200 marks