

ST BENEDICT'S

SUBJECT GRADE EXAMINER NAME

TEACHER

AP Mathematics			
12			
Mr Benecke			
Memo			

PAPER DATE MARKS MODERATOR

DURATION

Paper 1
11 July 2019
200
Mrs Povall + Mrs
Serafino
2 hours

QUESTION NO	DESCRIPTION	MAXIMUM MARK	ACTUAL MARK
1	Solving for x	27	
2	Limits	12	
3	Inverse Functions	12	
4	Differentiation	39	
5	Continuity and Differentiability	13	
6	Trigonometry	8	
7	Drawing Functions	15	
8	Interpretation and Newton-Raphson	22	
9	Integration	32	
10	Solids of Revolution	10	
11	Min/Max Problem	10	
TOTAL		200	

INSTRUCTIONS:

- 1. This paper consists of 11 questions and 18 pages.
- 2. Read the questions carefully.
- 3. Answer all questions.
- 4. Number your answers clearly and use the same numbering as in the question paper.
- 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 6. Round off your answers to **four** decimal digits where necessary.
- 7. All necessary working details must be shown. Answers only, without the relevant calculations will not be given marks. Equations may not be solved solely with a calculator.
- 8. It is in your interest to write legibly and present your work neatly.

QUESTION 1 27 MARKS

Solve for *x* in each of the following:

a)
$$|x|^2 - 5|x| = 14$$
 (6)

$$x^2 - 5x - 14 = 0$$
 or $x^2 + 5x - 14 = 0$

$$(x-7)(x+2) = 0$$
 or $(x+7)(x-2) = 0$

$$x = 7 \checkmark or \ x = -2$$
 or $x = -7 \checkmark or \ x = 2$

$$N/A \checkmark$$

b)
$$\frac{|x^2 - 3x|(x+3)}{|x-3|} \le 0$$

$$- + + + + +$$

$$-3 0 3$$
(5)

$$x \le -3 \checkmark \text{ or } x = 0 \checkmark$$

c)
$$\ln(e^{2x} - 12) - x = 0$$
 (7)

$$\ln(e^{2x} - 12) = x \checkmark$$

$$e^{2x} - 12 = e^x \checkmark$$

$$e^{2x} - e^x - 12 = 0$$

$$(e^x - 4)(e^x + 3) = 0$$

$$e^x = 4$$
 or $e^x = -3$ (n/a)

$$x = \ln 4$$

$$x = 1.3863$$

d) Given $f(x) = x^4 + 4x^3 + 3x^2 + 4x + 2$ and f(i) = 0, solve for x if f(x) = 0 (9)

Since x = i is a root, x = -i must also be a root \checkmark

$$(x-i)(x+i) = x^2 + 1 \checkmark \checkmark$$

$$x^4 + 4x^3 + 3x^2 + 4x + 2 = (x^2 + 1)(ax^2 + bx + c)$$

$$=(x^2+1)(x^2+4x+2)$$

$$\chi = \frac{-4 \pm \sqrt{4^2 - 4(1)(2)}}{2(1)} \checkmark$$

$$x = -2 \pm \sqrt{2}$$

$$\therefore x = i$$
 or $x = -i$ or $x = -2 + \sqrt{2}$ or $x = -2 - \sqrt{2}$

Evaluate:

a)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4}$$
 (3)

$$= \lim_{x \to 4} \frac{(x-4)(x+2)}{x-4} \checkmark$$

$$= \lim_{x \to 4} x + 2\checkmark$$

b)
$$\lim_{x \to 0} \frac{\sin 4x}{2\sin 2x} \tag{4}$$

$$= \lim_{x \to 0} \frac{2\sin 2x \cos 2x}{2\sin 2x} \checkmark \checkmark$$

$$= \lim_{x \to 0} \cos 2x \checkmark$$

c)
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 1}}{2x - 3}$$
 (5)

$$\lim_{x \to \infty} \frac{x\sqrt{4 - \frac{1}{x^2}}}{x(2 - \frac{3}{x})} \checkmark \checkmark$$

$$=\frac{\sqrt{4-0}}{2-0}\checkmark\checkmark$$

Given $f(x) = \ln(x+4)$

a) State the domain and range of f(x). (2)

Domain: $x > -4 \checkmark$ Range: $y \in R \checkmark$

b) Determine $f^{-1}(x)$, the inverse of f(x) in the form $f^{-1}(x) =$ (3)

 $x = \ln(y+4) \checkmark$

 $y + 4 = e^x \checkmark$

 $f^{-1}(x) = e^x - 4$

c) Sketch the graphs of $f^{-1}(x)$ and f(x) on the same axes, clearly labelling intercepts with the axes and asymptotes. (7)

1 mark for shape of the graphs 🗸

Determine:

a)
$$f'(x)$$
 if $f(x) = \sqrt{5x}$ by first principles. (8)

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{5x + 5h} - \sqrt{5x}}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{5x + 5h} - \sqrt{5x}}{h} \times \frac{\sqrt{5x + 5h} + \sqrt{5x}}{\sqrt{5x + 5h} + \sqrt{5x}}$$

$$f'(x) = \lim_{h \to 0} \frac{5x + 5h - 5x \checkmark}{h(\sqrt{5x + 5h} + \sqrt{5x}) \checkmark}$$

$$f'(x) = \lim_{h \to 0} \frac{5h}{h(\sqrt{5x+5h} + \sqrt{5x})} \checkmark$$

$$f'(x) = \frac{5}{\sqrt{5x} + \sqrt{5x}} \checkmark$$

$$f'(x) = \frac{5}{2\sqrt{5x}} \checkmark$$

b)
$$\frac{dy}{dx}$$
 if $y = (4x^2 + 2)^9$ (3)

$$\frac{dy}{dx} = 9(4x^2 + 2)^8 \checkmark . (8x) \checkmark$$

$$\frac{dy}{dx} = 72x(4x^2 + 2)^8 \checkmark$$

c)
$$D_x[e^{x^3}]$$
 (3)

$$=3x^2.e^{x^3}\checkmark\checkmark\checkmark$$

d)
$$f'(x)$$
 if $f(x) = \ln\left(\frac{x}{x^2 - 1}\right)$ (7)

$$f'(x) = \frac{1(x^2 - 1)\checkmark - 2x(x)\checkmark}{(x^2 - 1)^2\checkmark} \times \frac{x^2 - 1}{x}\checkmark$$

$$f'(x) = \frac{x^2 - 1 - 2x^2}{(x^2 - 1)^2} \times \frac{x^2 - 1}{x} \checkmark$$

$$f'(x) = \frac{-x^2 - 1}{(x^2 - 1)^2} \times \frac{x^2 - 1}{x} \checkmark$$

$$f'(x) = \frac{-x^2 - 1}{x^3 - x} \checkmark$$

e)
$$D_x[2x^4 \cdot \cos(x^3 - 1)]$$
 (6)
= $8x^3 \checkmark \cdot \cos(x^3 - 1) \checkmark - \checkmark 2x^4 \checkmark \cdot \sin(x^3 - 1) \cdot 3x^2 \checkmark$

f)
$$\frac{dy}{dx}$$
 if $x^2 + xy + y^2 = 9$ (6)

$$2x\checkmark + y\checkmark + \frac{dy}{dx}x\checkmark + 2y\frac{dy}{dx}\checkmark = 0$$

 $= 8x^3 \cdot \cos(x^3 - 1) - 6x^6 \cdot \sin(x^3 - 1)$

$$\frac{dy}{dx}x + 2y\frac{dy}{dx} = -2x - y$$

$$\frac{dy}{dx} = \frac{-2x - y}{x + 2y} \quad \checkmark$$

g)
$$f^{n}(x)$$
 if $f(x) = \frac{1}{x}$ (6)

$$f^{1}(x) = -1\left(\frac{1}{x^{2}}\right) \checkmark$$

$$f^{2}(x) = 1.2\left(\frac{1}{x^{3}}\right) \checkmark$$

$$f^{3}(x) = -3.2.1\left(\frac{1}{x^{4}}\right) \checkmark$$

$$f^{n}(x) = (-1)^{n} \checkmark . n! \checkmark \left(\frac{1}{x^{n+1}}\right) \checkmark$$

Given:

$$f(x) = \begin{cases} x^2 & \text{if } x < 2\\ |x - 6| & \text{if } x \ge 2 \end{cases}$$

a) Write f(x) as a split function without the absolute value notation. (4)

$$f(x) = \begin{cases} x^2 & \text{if } x < 2\\ -x + 6\checkmark & \text{if } 2 \le x < 6\checkmark\\ x - 6\checkmark & \text{if } x \ge 6\checkmark \end{cases}$$

b) Determine the value of f'(1) and f'(6).

$$f'(x) = 2x \checkmark \text{ for } x < 2$$
$$f'(1) = 1\checkmark$$

f'(6) doesn't exist \checkmark

c) Determine if f(x) is continuous and differentiable at x = 2. Justify your answer fully. (6)

$$\lim_{x \to 2^-} x^2 = 4 \checkmark$$

$$\lim_{x \to 2^+} -x + 6 = 4 \checkmark$$

∴ f(x) is continuous \checkmark

$$\lim_{x \to 2^{-}} 2x = 4 \checkmark$$

$$\lim_{x\to 2^+} -1 = -1 \checkmark$$

∴ f(x) is not differentiable \checkmark

(3)

Six identical triangles are inscribed in a circle. Area of the total shaded region is $10 \ units^2$. Determine the radius of the circle. (8)

Area of Circle = $10 + 6 \times \frac{1}{2}r^2 \sin\theta$

$$\pi r^2 = 10 + 3r^2 \sin\theta$$

$$\theta = \frac{2\pi}{6} = \frac{\pi}{3} \checkmark$$

$$\pi r^2 = 10 + 3r^2 \sin\frac{\pi}{3} \checkmark$$

$$r^2\left(\pi - 3\sin\frac{\pi}{3}\right) = 10 \quad \checkmark$$

$$r^2 = \frac{10}{\pi - 3\sin\frac{\pi}{3}} \checkmark$$

$$r^2 = 18,3989$$

$$r = 4,2894$$

Consider the function $f(x) = \frac{x^2 + x - 12}{x + 3}$

a) Determine the equation of the vertical asymptote. (2)

x = -3 is the vertical asymtote \checkmark

b) Determine the equation of the oblique asymptote. (4)

 $\frac{x^2 + x - 12}{x + 3} = x - 2 + R \checkmark \checkmark \text{ so oblique asymptote is } y = x - 2 \checkmark \checkmark$

c) Sketch the graph of f. (9)

$$y = \frac{0^2 + 0 - 12}{0 + 3} = -4 \qquad (y - int) \checkmark$$

$$0 = x^2 + x - 12$$

$$(x + 4)(x - 3) = 12 \checkmark$$

$$x = -4$$
; $x = 3$ \checkmark $(x - int)$

The graph of $f(x) = \frac{1}{x^2} - \frac{1}{x-2} + 1$ is shown, with a turning point at D(1,14; 2,93) and an x-intercept at the point indicated by A

a) Give the equations of all the vertical and horizontal asymptotes of the graph of f. (4)

$$x = 0, \checkmark \quad x = 2, \checkmark \quad y = 1 \checkmark \checkmark$$

b) Use Newton's method to determine the coordinates of A, the x-intercept, correct to 4 decimal places. Use x=3 as your initial value. (You must find x_1 manually, the rest can be done on the calculator, do not use the "solve function"). (8)

$$f(x) = x^{-2} - (x - 2)^{-1} + 1 \checkmark$$

$$f'(x) = -2x^{-3} + (x-2)^{-2} \checkmark$$

$$x_0 = 3$$

$$x_1 = x_0 \checkmark - \frac{x_0^{-2} - (x_0 - 2)^{-1} + 1 \checkmark}{-2x_0^{-3} + (x_0 - 2)^{-2} \checkmark}$$

$$x_1 = 2,88$$

$$x_2 = 2,8931$$

$$x_3 = 2,8933$$

$$x_4 = 2,8933$$

c) For which values of x is the function f strictly increasing?

(4)

$$x < 0$$
 and $1,14$ $< x < 2$ and $x > 2$

d) Draw a rough sketch of f' on the same system of axes above. Show clearly where f' has asymptotes and intercepts with the axes, if any. (6)

QUESTION 9 32 MARKS

a) Determine the following integrals:

1)
$$\int e^{2x+3} dx$$

$$= e^3 \int e^{2x} dx \checkmark$$

$$= e^3 \left(\frac{1}{2}e^{2x}\right) + C\checkmark$$

$$= \frac{e^{2x+3}}{2} + C\checkmark$$
(3)

2)
$$\int \frac{2x^7 - x^3}{x^8 - x^4} dx$$

$$= \frac{1}{4} \int \frac{8x^7 - 4x^3}{x^8 - x^4} dx \checkmark \checkmark$$

$$= \frac{1}{4} \ln|x^8 - x^4| C \checkmark \checkmark$$
(4)

3)
$$\int 3x(x+5)^8 dx$$

$$u = x+5 \checkmark$$

$$\frac{du}{dx} = 1 \checkmark$$

$$x = u-5 \checkmark$$
(7)

$$\int 3x(x+5)^8 dx$$

$$= \int 3(u-5)(u)^8 du \checkmark$$

$$= \int 3u^9 - 15u^8 du \checkmark$$

$$= \frac{3u^{10}}{10} - \frac{15u^9}{9} + C \checkmark$$

$$= \frac{3(x+5)^{10}}{10} - \frac{5(x+5)^9}{3} + C \checkmark$$

$$4) \quad \int (2x+3)\sin 4x \ dx \tag{9}$$

let
$$f(x) = 2x + 3$$
 and $g'(x) = \sin 4x$
then $f'(x) = 2$ and $g(x) = -\frac{1}{4}\cos 4x$
 $= (2x + 3)\checkmark \left(-\frac{1}{4}\cos 4x\right)\checkmark - \int 2\checkmark \times -\frac{1}{4}\cos 4x \, dx\checkmark + C$

$$= -\frac{(2x+3)\cos 4x}{4}\checkmark + \frac{\sin 4x}{8}\checkmark\checkmark + C$$

b) Find
$$k$$
 if $\int_0^k 3x\sqrt{x^2 + 5} \ dx = 10$ (9)

$$u = x^2 + 5$$

$$\frac{du}{dx} = 2x$$

$$=\int \frac{3}{2}\sqrt{u} \ du \checkmark$$

$$= \frac{3}{2} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C \checkmark$$

$$=u^{\frac{3}{2}}\checkmark$$

$$\left[(x^2 + 5)^{\frac{3}{2}} \right]_{0}^{k} = 10^{\checkmark}$$

$$(k^2 + 5)^{\frac{3}{2}} - 5^{\frac{3}{2}} = 10 \checkmark$$

$$(k^2 + 5)^{\frac{3}{2}} = 21,18033989$$

$$k^2 + 5 = 7.655177822$$

$$k^2 = 2,655177822$$

$$k = 1.62947$$

QUESTION 10 10 MARKS

Determine the volume of a solid obtained by rotating the region bounded by $y = \sqrt{x^2 - x}$, x = 2, x = 4, and y = 1 about the x - axis. (10)

$$V = \pi \int_{a}^{b} (f(x))^{2} dx \checkmark$$

$$= \pi \int_{2}^{4} \left(\left(\sqrt{x^{2} - x} \right)^{2} - (1)^{2} \right) dx \checkmark \checkmark$$

$$= \pi \int_{2}^{4} (x^{2} - x - 1) dx$$

$$=\pi\left[\frac{x^3}{3}\checkmark-\frac{x^2}{2}\checkmark-x\checkmark\right]^4$$

$$= \pi \left[\left(\frac{(4)^3}{3} - \frac{(4)^2}{2} - (4) \right) \checkmark - \left(\frac{(2)^3}{3} - \frac{(2)^2}{2} - (2) \right) \right] \checkmark$$

$$=\frac{32}{3}\pi\checkmark$$

In the sketch $\triangle ABC$ is an equilateral triangle with each side equal to a units. DEFG is a rectangle with BE = FC = x units.

.

a) Prove that the area of the rectangle is $A(x) = x\sqrt{3}(a-2x)$ (5)

$$\hat{B} = \frac{1}{3}\pi \checkmark \checkmark$$

$$BE = x$$

$$\therefore DE = x\sqrt{3} \checkmark$$

$$EF = a - 2x \checkmark$$

$$A(x) = x\sqrt{3}(a - 2x) \checkmark$$

b) If a = 2, determine the maximum area of the rectangle.

$$A(x) = x\sqrt{3}(2 - 2x)$$

$$A(x) = 2x\sqrt{3} - 2x^2\sqrt{3} \checkmark$$

$$A'(x) = 2\sqrt{3} - 4\sqrt{3}x \checkmark$$

$$0 = 2\sqrt{3} - 4\sqrt{3}x \checkmark$$

$$A\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)\sqrt{3}\left(2 - 2\left(\frac{1}{2}\right)\right)$$

$$4\sqrt{3}x = 2\sqrt{3}$$

$$A\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}$$

$$x = \frac{1}{2} \checkmark$$

 $\frac{\sqrt{3}}{2}$ units² is the maximum area \checkmark

(5)