

ST BENEDICT'S

SUBJECT GRADE EXAMINER NAME

TEACHER

AP Mathematics	PAF
12	DA
Mr Benecke	MA
	МО

PAPER
DATE
MARKS
MODERATOR

DURATION

Paper 1
11 July 2019
200
Mrs Povall + Mrs
Serafino
2 hours

QUESTION NO	DESCRIPTION	MAXIMUM MARK	ACTUAL MARK
1	Solving for x	27	
2	Limits	12	
3	Inverse Functions	12	
4	Differentiation	39	
5	Continuity and Differentiability	13	
6	Trigonometry	8	
7	Drawing Functions	15	
8	Interpretation and Newton-Raphson	22	
9	Integration	32	
10	Solids of Revolution	10	
11	Min/Max Problem	10	
TOTAL		200	

INSTRUCTIONS:

- 1. This paper consists of 11 questions and 8 pages.
- 2. Read the questions carefully.
- 3. Answer all questions.
- 4. Number your answers clearly and use the same numbering as in the question paper.
- 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 6. Round off your answers to **four** decimal digits where necessary.
- 7. All necessary working details must be shown. Answers only, without the relevant calculations will not be given marks. Equations may not be solved solely with a calculator.
- 8. It is in your interest to write legibly and present your work neatly.

QUESTION 1 27 MARKS

Solve for *x* in each of the following:

a)
$$|x|^2 - 5|x| = 14$$
 (6)

b)
$$\frac{|x^2 - 3x|(x+3)}{|x-3|} \le 0$$
 (5)

c)
$$\ln(e^{2x} - 12) - x = 0$$
 (7)

d) Given
$$f(x) = x^4 + 4x^3 + 3x^2 + 4x + 2$$
 and $f(i) = 0$, solve for x if $f(x) = 0$ (9)

QUESTION 2 12 MARKS

Evaluate:

a)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4}$$
 (3)

b)
$$\lim_{x \to 0} \frac{\sin 4x}{2\sin 2x} \tag{4}$$

c)
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 1}}{2x - 3}$$
 (5)

QUESTION 3 12 MARKS

Given $f(x) = \ln(x+4)$

a) State the domain and range of
$$f(x)$$
. (2)

b) Determine
$$f^{-1}(x)$$
, the inverse of $f(x)$ in the form $f^{-1}(x) = ...$ (3)

c) Sketch the graphs of $f^{-1}(x)$ and f(x) on the same axes, clearly labelling intercepts with the axes and asymptotes. (7)

QUESTION 4 39 MARKS

Determine:

a)
$$f'(x)$$
 if $f(x) = \sqrt{5x}$ by first principles. (8)

b)
$$\frac{dy}{dx}$$
 if $y = (4x^2 + 2)^9$ (3)

c)
$$D_x[e^{x^3}]$$
 (3)

d)
$$f'(x)$$
 if $f(x) = \ln\left(\frac{x}{x^2 - 1}\right)$ (7)

e)
$$D_x[2x^4.\cos(x^3-1)]$$
 (6)

f)
$$\frac{dy}{dx}$$
 if $x^2 + xy + y^2 = 9$ (6)

g)
$$f^{n}(x)$$
 if $f(x) = \frac{1}{x}$ (6)

QUESTION 5 13 MARKS

Given:

$$f(x) = \begin{cases} x^2 & \text{if } x < 2\\ |x - 6| & \text{if } x \ge 2 \end{cases}$$

- a) Write f(x) as a split function without the absolute value notation. (4)
- b) Determine the value of f'(1) and f'(6). (3)
- c) Determine if f(x) is continuous and differentiable at x = 2. Justify your answer fully. (6)

Six identical triangles are inscribed in a circle. Area of the total shaded region is $10 \ units^2$. Determine the radius of the circle.

QUESTION 7 15 MARKS

Consider the function $f(x) = \frac{x^2 + x - 12}{x + 3}$

- a) Determine the equation of the vertical asymptote. (2)
- b) Determine the equation of the oblique asymptote. (4)
- c) Sketch the graph of f. (9)

QUESTION 8 22 MARKS

The graph of $f(x) = \frac{1}{x^2} - \frac{1}{x-2} + 1$ is shown, with a turning point at D(1,14; 2,93) and an x-intercept at the point indicated by A

- a) Give the equations of all the vertical and horizontal asymptotes of the graph of f. (4)
- b) Use Newton's method to determine the coordinates of A, the x-intercept, correct to 4 decimal places. Use x = 3 as your initial value. (You must find x_1 manually, the rest can be done on the calculator, do not use the "solve function"). (8)
- c) For which values of x is the function f strictly increasing? (4)
- d) Draw a rough sketch of f' on the same system of axes above. Show clearly where f' has asymptotes and intercepts with the axes, if any. (6)

QUESTION 9 32 MARKS

a) Determine the following integrals:

$$1) \qquad \int e^{2x+3} \ dx \tag{3}$$

2)
$$\int \frac{2x^7 - x^3}{x^8 - x^4} \ dx \tag{4}$$

3)
$$\int 3x(x+5)^8 dx$$
 (7)

4)
$$\int (2x+3)\sin 4x \ dx \tag{9}$$

b) Find
$$k$$
 if $\int_0^k 3x\sqrt{x^2 + 5} \ dx = 10$ (9)

QUESTION 10 10 MARKS

Determine the volume of a solid obtained by rotating the region bounded by $y = \sqrt{x^2 - x}$, x = 2, x = 4, and y = 1 about the x - axis. (10)

In the sketch $\triangle ABC$ is an equilateral triangle with each side equal to a units. DEFG is a rectangle with BE = FC = x units.

.

- a) Prove that the area of the rectangle is $A(x) = x\sqrt{3}(a-2x)$ (5)
- b) If a = 2, determine the maximum area of the rectangle.

(5)