

# GRADE 12 ADVANCED PROGRAMME MATHEMATICS Preliminary Examination Paper 1 ALGEBRA & CALCULUS

Time: 2 Hours 200 marks

Date: 23 September 2020

Examiner: Ms A Smith Moderator: Mr J Ruiz-Mesa

#### PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

- 1. This question paper consists of 8 pages and an Information Booklet of 2 pages (i-ii). Please check that your question paper is complete.
- 2. Answer all the questions in the ANSWER BOOKLET.
- 3. Approved, non-programmable, non-graphical calculators may be used, unless otherwise indicated.
- 4. Work neatly and show all the necessary steps in your calculations.
- 5. Diagrams have not been drawn to scale.
- 6. Trigonometric calculations should be done using RADIANS and answers should be given in RADIANS.
- 7. Round off your answers to TWO decimal digits, unless otherwise indicated.

| 1.1 | Solve for $x$ | $c \in \mathbb{R}$ . | without the | use of a | a calculator | and showing | ı all | workina: |
|-----|---------------|----------------------|-------------|----------|--------------|-------------|-------|----------|
|     |               | ,                    |             |          |              | aa oo       | g ~   |          |

$$|x^2 - 15| = 2x \tag{6}$$

(b) 
$$2 \ln x + 5 = 12 \log_x e$$
 (8)

1.2 Given: 
$$f(x) = x^2 - 2x$$
 and  $g(x) = |x|$ 

(a) Determine 
$$h(x)$$
, if  $h(x) = f(g(x))$ . (2)

- (b) Sketch the graph of h(x). Clearly indicate all intercepts with the axes as well as the coordinates of the turning point(s). (6)
- (c) Use the graph you sketched in (b) to solve for  $x \in \mathbb{R}$  where h(x) < x + 2. (8) [30]

# **QUESTION 2**

- 2.1 The cubic equation  $2x^3 5x^2 + px 5 = 0$  has a solution x = 1 2i.

  Determine the value of p and the other two solutions. (8)
- 2.2 If w = a + bi and  $w^2 = 5 12i$ , determine all possible real values of a and b. (10) [18]

Use mathematical induction to prove that

$$\sum_{i=1}^{n} n \times 2^{n} = (n-1) \cdot 2^{n+1} + 2$$
 (12)

[12]

#### **QUESTION 4**

4.1 A function is defined as follows:

$$f(x) = \begin{cases} ax - 21 & \text{if} \quad x < 5 \\ x^2 - ax + b & \text{if} \quad x \ge 5 \end{cases}$$

Determine the values of a and b if it is given that f is differentiable at x = 5. (Take special care with your notation). (8)

4.2 Given: 
$$g(x) = \frac{2x^2 + 3x - 2}{x - 3}$$

- (a) Determine the x-intercepts of g. (4)
- (b) Determine all possible asymptotes of g. (6)
- (c) Determine the coordinates of the stationary points of g. (8)
- (d) Determine the nature of the stationary points of g. (6)

[32]

5.1 The diagram shows ABC, a sector of a circle with radius 6 cm and centre A. The region R, shown shaded below, is bounded by lines CD, DB and the arc BC. BAC = 0.95 radians and AD = BD.



- (a) Determine the lengths of line BD and arc BC. (6)
- (b) Determine the area of region R. (4)
- 5.2 The diagram below shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian. The volume of the box is  $300 \text{ cm}^3$ .



Determine the value of r for which the surface area of the box will be at a minimum.

(9)

[19]

6.1 Determine 
$$\frac{dy}{dx}$$
 if  $y = \frac{e^{2x}}{\sin 3x + 2}$  (6)

- Determine the gradient of the tangent to the curve  $2y^3 + 2x^3y = y + 4$  at the point (-2;3). (8)
- 6.3 The function  $f(x) = \cos^3 x x \ln x$  has a root on the interval  $x \in [1; 2]$ . Use Newton-Raphson iteration to determine this root. You should:
  - use an initial guess of x = 1
  - show the iterative formula you use
  - show your first two approximations
  - give your answer to 5 decimal places (8)

[22]

# **QUESTION 7**

7.1 Given: 
$$\int_{0}^{5} h(x) dx = -3$$

Determine  $\int_{-5}^{5} h(x) dx$  if:

(a) 
$$h(x) = h(-x)$$

(b) 
$$2h(x) = 5h(-x)$$

(c) 
$$h(x) = -2h(-x)$$
 (4)

7.2 Use the rectangles to estimate the shaded area in the diagram below.



**QUESTION 8** 

Determine the following integrals: 8.1

(a) 
$$\int \frac{e^{5x}}{3} dx$$

(b) 
$$\int \tan^3 2x \cdot \sec^2 2x \, dx$$
 (6)

(c) 
$$\int \cot^2 4x \, dx \tag{6}$$

(d) 
$$\int x(5x-2)^{\frac{2}{3}} dx$$
 (8)

8.2 Given: 
$$g(x) = \frac{9x^2 - 15x - 6}{x^3 - 3x^2 - 9x - 5}$$

(a) Resolve 
$$g(x)$$
 into partial fractions. (10)

(b) Hence, or otherwise, determine 
$$\int g(x)dx$$
. (6)

[39]

#### **QUESTION 9**

The diagram shows a salt container in the shape of a frustum of a cone. The frustum has a base diameter of 18 cm, top diameter of 6 cm and slant height of 10 cm. This has been created by rotating a certain function about the x-axis.



- 9.1 Using a suitable sketch on a Cartesian plane, determine the integral that would represent the volume of the frustum. (8)
- 9.2 Hence or otherwise, determine to what height the container must be filled to contain 856 cm<sup>3</sup> of salt.

[14]

Total: [200]

EXAMINATION NUMBER:

|   | _ |   | _ |   | _ | _ | _ | _ |  |  |
|---|---|---|---|---|---|---|---|---|--|--|
| 2 | 0 | 1 | 0 | 1 | 2 | 0 | 2 | 0 |  |  |
|   |   |   |   |   |   |   |   |   |  |  |

# **MARKING GRID**

| Question           | Algebra | Calculus |
|--------------------|---------|----------|
| 1                  | _       |          |
|                    | /30     |          |
| 2                  | /18     |          |
| 3                  | /12     |          |
| 4                  |         | /32      |
| 5                  |         | /19      |
| 6                  |         | /22      |
| 7                  |         | /14      |
| 8                  |         | /39      |
| 9                  |         | /14      |
| TOTAL<br>PER TOPIC | /60     | /140     |
| ТОТА               | 7140    |          |
|                    |         | /200     |