

ST BENEDICT'S

SUBJECT GRADE EXAMINER NAME

TEACHER

AP Mathematics	PA
12	D
MH Povall	М
	M
MH Povall	DI

APER	Prelim Paper 1	
ATE	7 September 2020	
1ARKS	200	
ODERATOR	Cluster moderated	
URATION		
	2 Hours	

QUESTION NO	DESCRIPTION	MAXIMUM MARK	ACTUAL MARK
1	Proof by Mathematical Induction	14	
2	Roots of equations and complex numbers	15	
3	Limits/continuity and absolute values	32	
4	Inverses, in and e	18	
5	Differentiation	36	
6	Application of differentiation and Newton-Raphson	10	
7 & 8	Rational Functions	12 + 12	
9	Area under curve	6	
10	Integration	30	-
11	Application of Integration	15	
TOTAL		200	-

INSTRUCTIONS:

- 1. This paper consists of 11 questions and 10 pages.
- 2. Read the questions carefully.
- 3. Answer all questions.
- 4. Number your answers clearly and use the same numbering as in the question paper.
- 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 6. Round off your answers to two decimal digits where necessary.
- 7. All necessary working details must be shown. Answers only, without the relevant calculations will not be given marks. Equations may not be solved solely with a calculator.
- 8. It is in your interest to write legibly and present your work neatly.
- 9. A four-page information booklet is provided.

QUESTION 1 14 MARKS

Use Mathematical Induction to prove that:

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n+1)} = \frac{n}{n+1}$$

QUESTION 2 15 MARKS

a) 1) If it is given that x = 1 - 2i is a zero of g(x).

Show that $x^2 - 2x + 5$ is a factor of g(x). (5)

2) Given that $g(x) = x^4 - 6x^3 + 18x^2 - 30x + 25$

According to the mathematician Gauss, a polynomial of degree n has n zeros.

Therefore g(x) has 4 zeros.

Determine the other two zeros of g(x) if $x^2 - 2x + 5$ is a factor of g(x). (5)

b) If it is given that x = a + bi satisfies the equation (2 + i)(x + 3i) = 8i + 6

Find the values of a and b. (5)

QUESTION 3 32 MARKS

a) The function f is represented by the graph below:

Give all the values of x (no reasons required) for which:

3)
$$f$$
 is continuous but not differentiable. (2)

$$4) f'(x) = 0 (3)$$

5)
$$f''(x) > 0$$
 (3)

b)
$$g(x) = \begin{cases} \frac{(x+3)(x+1)}{(x+3)} & \text{if } x < -1 \\ x^2 + 1 & \text{if } x \ge -1 \end{cases}$$

Determine, with algebraic motivation, whether g is continuous at the following points and state the type of discontinuity where applicable.

- 1) x = 3
- 2) x = -1

3)
$$x = -3$$
 (10)

c) 1) Sketch the graph of
$$f(x) = |2x + 3| + x + 5$$
 (8)

2) Given that g(x) = kx. For which values of k will the graphs of f and g have no points of intersection. (2)

QUESTION 4 18 MARKS

- a) Consider the function $f(x) = e^{x+2} 1$
 - 1) Find the equation of $f^{-1}(x)$. (3)
 - 2) Sketch the graphs of f and f^{-1} on the same set of axes. (8)
- b) Given that $x = \ln a$ is a solution to the equation $10e^{2x} 7e^x = 26$, find, without using a calculator, the value(s) of a. (7)

QUESTION 5 36 MARKS

a) Find all the values of a for which the $\lim_{x \to a} \frac{x^3 + 1}{x^3 - x}$ does not exist. (3)

b) 1) Find
$$f'(x)$$
 by first principles if $f(x) = \sqrt{1 - 2x}$. (6)

2) Give the domain of
$$f'$$
. (2)

c) The functions f , g and h are defined as follows:

$$f(x) = e^{3x + \sqrt[4]{x}}$$

$$g(x) = 2x. sec3x$$

$$h(x) = \sin^2(\tan(2x))$$

Determine
$$f'(x)$$
, $g'(x)$ and $h'(x)$. (10)

- d) 1) Find an expression for $\frac{dy}{dx}$ in terms of x and y if $x^2 4xy + 4y + 8 = 0$. (9)
 - 2) Hence, find the *x*-coordinates of the stationary points on this curve. (6)

QUESTION 6 10 MARKS

Two heat sources H_1 and H_2 are 10m apart and a point P lies on the line joining them, at a distance x metres from H_1 . The temperature $T^{\circ}C$ at P is given by $T = \frac{8}{x^2} + \frac{1}{(10-x)^2}$

- a) Set up an equation so that the temperature at P will be a minimum. (4)
- b) Solve the equation found in a) above using the Newton-Raphson method.Show all the steps that you have followed.
- c) Explain where point P is in relation to H_1 . (1)

Match the following rational functions to the appropriate graphs A-F below and give a reason for your selection:

1.
$$f(x) = \frac{x^2-4}{x+2}$$

2.
$$f(x) = \frac{x-2}{x^2-x-6}$$

3.
$$f(x) = \frac{x^2 + x - 6}{x^2 - 6x + 9}$$

4.
$$f(x) = \frac{x^2 - 4x + 4}{x - 3}$$

QUESTION 8 12 MARKS

Consider $f(x) = \frac{6x^2 - x - 1}{px - 2}$

a) For which value(s) of p will y = 2x + 1 be an asymptote of the graph of f. (3)

b) Sketch the graph of
$$f$$
 if $p = 4$. (4)

c) Determine f' when p = 3 and show that f has two stationary points. (5)

QUESTION 9 6 MARKS

Serema is attempting a Riemann sum to determine the area bounded by the curve f, the x – axis, the y – axis and the line x = 1 as shown below:

He has correctly determined that, if he uses n rectangles, then the area will be:

$$Area = \frac{10}{3} + \frac{3}{2n} + \frac{1}{6n^2}$$

- a) Determine the area when 4 rectangles are used. (2)
- b) Will this be an under-approximation or an over-approximation?

 Explain your answer. (2)
- c) Determine the exact area. (2)

QUESTION 10 30 MARKS

a) Determine the following integrals:

1)
$$\int \left(2x^3 - \sec^2\left(\frac{x}{2}\right) - \frac{1}{\sqrt[3]{x}}\right) dx. \tag{3}$$

$$\int \frac{e^x}{1+e^x} dx \tag{3}$$

3)
$$\int \cos^2 3x. \sin 3x \, dx \tag{4}$$

4)
$$\int \cos 4\theta \cdot \sin 5\theta \, d\theta \tag{5}$$

$$\int y\sqrt{y+3}\ dy \tag{5}$$

b) 1) Decompose
$$\frac{3x+5}{(x+1)(x+2)(x+3)}$$
 into partial fractions. (6)

2) Hence, without a calculator, evaluate:

$$\int_{1}^{2} \frac{3x+5}{(x+1)(x+2)(x+3)} \ dx$$

expressing your answer in the form $\ln \frac{a}{b}$ where a and b are integers. (4)

The sketch shows the graph of $f(x) = \frac{x}{\sqrt{2x^2+1}}$ which cuts the axes at the origin.

The shaded region is the area between the graph, the x – axis and the line x = m.

- a) Determine the shaded area in terms of m. (9)
- b) Calculate the area if m = 2. (2)
- c) Set up, but do not integrate or calculate, an expression in terms of m that represents the volume of the solid that will be formed if the shaded region is rotated around the x axis. (4)