

AUGUST 2021

ADVANCED PROGRAMME MATHEMATICS: PAPER I

MODULE 1: CALCULUS AND ALGEBRA

Time: 2 hours 200 marks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 20 pages and an Information Booklet of 2 pages (i–ii). Please check that your question paper is complete.
- 2. Non-programmable and non-graphical calculators may be used, unless otherwise indicated.
- 3. All necessary calculations must be clearly shown, and writing must be legible.
- 4. Diagrams have not been drawn to scale.
- 5. Round off your answers to 2 decimal digits, unless otherwise indicated.

EXAMINATION NUMBER:

Question Number	1	2	3	4	5	6	7	8	9	Total
Mark Achievable	43	24	7	11	28	10	10	28	39	200
Mark Attained										

Examiner: Mrs K Raeburn

Moderator : Mr B Dannatt External Moderator : Mrs C Kennedy

QUESTION ONE

1.1 Solve for $x \in \mathbb{R}$ in each of the following. Leave answers in terms of ln or e if necessary.

(a)
$$50 = e^{50x} - 1$$
 (4)

(b)
$$2e^x - 1 = e^{-x}$$

(c)
$$x(3|x|-1) = -10$$
 (8)

1.2 Given:
$$f(x) = e^{2x} - 9$$
 and $g(x) = \ln(x - 1)$ for $x > 1$ Solve for x if $f(g(x)) = 0$ (9)

1.3 The temperature T (in °C) of a cooling cup of tea, after a time t (in minutes), can be modelled by the equation: $T = 20 + Ae^{-kt}$, where A and k are constants.

(a) Write down the room temperature. (2)

(b) Given that the initial temperature is 85 °C and that the temperature is decreasing at the rate of 5 °C per minute, initially, determine the value of k. (9)

(c) Determine the length of time, to the nearest minute it takes for the tea to cool to 50 °C. (5)

QUESTION TWO

2.1 It is given that
$$f(g(x)) = \frac{1}{x-1} + x^2 - 2x + 1$$
 and $g(g(x)) = x - 2$.

Determine $g(f(2))$. (6)

2.2 The following function is given:

$$p(x) = \begin{cases} 2x+1 & if & x \le q \\ x^2 - 4x + 10 & if & x > q \end{cases}$$

(a) For what value(s) of q is p(x) continuous at x = q? (6)

2.3 Given:
$$f(x) = \frac{\sqrt{2x-1} - \sqrt{x}}{x-1}$$
Determine:
$$\lim_{x \to 1} f(x)$$
(6)

QUESTION THREE

In using the induction method to prove the accuracy of a statement, you assume the statement is true for n=k.

Assuming $2^k + 2^{k+1} + 2^{k+2}$ is divisible by 7, prove that it will be true for the next natural number n = k + 1.

[7]

QUESTION FOUR

In the diagram a square tile is shown, in which a regular hexagon is inscribed in a circle with centre O. The circle fits exactly inside the square. The area of the shaded region is 54 cm².

- 4.1 Write down the size of $A\hat{O}B$ in radians, leaving the answer in terms of π if necessary. (2)
- 4.2 Determine the area of the square tile, correct to 2 decimal places. (9)

QUESTION FIVE

5.1 Determine the derivatives of the following

(a)
$$y = (3x^4 - 10x)^{15} \cdot \sqrt{4x^4 + 64}$$
 (No need to simplify) (5)

(b)
$$f(x) = \sin^2(3x - 4)$$
 (simplify to one trigonometric ratio) (5)

(c)
$$y = \tan(3x - 4)^2$$
 (5)

5.3 State the equation of the tangent to $f(x) = e^{2x} - 3x$ at the y intercept. (5)

[28]

QUESTION SIX

Given: y = x + 1 and y = 2tanx

- 6.1 Create a function f(x) that can be used to determine the x value of the point of intersection of the two graphs. (2)
- 6.2 Show that f(x) = 0 has a solution in the interval [0; 1]. (3)

6.3 Calculate this x value using Newton's interpolation method. Round off your answer to 4 decimal places. (5)

[10]

QUESTION SEVEN

Given: $f(x) = 2^{x} - 2$

Sketch the following curves on the axes provided. Label your intercepts and asymptotes.

$$7.1 \quad y = f(x) \tag{2}$$

7.2
$$y = |f(x)|$$
 (2)

7.4 $y = f^{-1}(x)$ (3)

[10]

QUESTION EIGHT

Determine the following integrals:

8.1
$$\int \frac{1}{x^2 \left(1 + \frac{1}{x}\right)^3} dx$$
 (8)

8.2
$$\int \ln x \, dx \tag{8}$$

QUESTION NINE

9.1 The sketch given below represents $h(x) = \frac{2x^3}{x^2 - 4}$

(a) Calculate the coordinates of A and B, the local maximum and minimum of h(x).

(b) Determine the equation of the three asymptotes.

(7)

(c) From the graph, calculate the value(s) of x if $\sqrt{\frac{2x^3}{x^2-4}}$ is real. (3)

(d) Sketch h(-x), on the diagram provided. Clearly show the asymptotes.

(7)

9.2 Refer to the figure below showing the graphs of:

$$f(x) = 3x^3 - x^2 - 10x$$
 and $g(x) = -x^2 + 2x$

(a) Calculate the area of the shaded region.

