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QUESTION 1  

 

a) Solve for x, without using a calculator and showing all working: 

 

i) 
3

12
x 1

=
−

 (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii) log(2 1) log( 1) 1x x+ − − =         State restrictions where necessary. (5) 
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iii) 2ln( 20)xe x− =  (give your answer in terms of ln a, given a is a constant) (6) 
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b) The following formula models the number of years (t), from now, in terms of the 

number of people (P) that stay in a town at time t:  

4
100 ln

3 60000

P
t

 
= − 

 
  

i)    Determine how many people initially live in the town when t = 0.    

   (Without the use of a calculator and showing all working out.)    (5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii)    As a result of migration to the cities, the town’s population is decreasing.  

   Calculate after how many years (to the nearest year) there will be no 

   residents left in the town.         (3)  
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iii)    Change the subject of the formula to P, hence write the formula as P = . . (5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv)  Hence, or otherwise, determine the initial rate at which the population 

         decreases (that is when t = 0 years).  (5) 
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c) Given ( ) ( 1)ln( 1)f x x x= − −  for 1x   and ( ) 1xg x e= +   

 

i) Show that ( ) . xf g x x e=   (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii) Hence solve for x if ( ) 2f g x x=  (5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[42] 
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QUESTION 2  Note 1i = −   

a) Determine an equation in the form: 4 3 2 0x ax bx cx d+ + + + =  given that 

1 2x = −  and 3x i= −  are roots of the equation. (8) 
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b) Determine the values of a and b, where a and b are real numbers that satisfy the 

equation: 
2

7
1 3

a i
bi i

i

+
 = − −

−
 (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] 
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QUESTION 3  

Prove by Mathematical induction that 8 7 6n n− +  is divisible by 7 for all n   (11) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [11] 
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QUESTION 4  

a) Determine the derivative of 
1

( )
3 2

f x
x

=
−

 by first principles. (8) 
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b) Determine: 

5
3 1

2 5
x

x
D

x

 − 
  

+   

  (6) 
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x

y

P (1;0) 

c) Determine the gradient of the tangent to the curve 4 23 4 sin 4 0y x x y+ − − =   

 
      at the point P (1; 0)                  (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[22] 
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QUESTION 5  

The function f(x) is defined as follows: 
 

 

a
if x 2

f(x) x

b 2x if x 2




= 
 − 

 

 
 Determine the values of a and b if f(x) is differentiable at x = 2.  
 
Justify your answer, using correct notation of limits.                  (12) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] 
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QUESTION 6 

 

Given the function 
3 2

2

4 6
( )

1

x x x
f x

x

+ + −
=

−
  

 

a) Determine the coordinates of the stationary points. (9) 
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b) Determine the intercepts with the axes. (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Determine the equations of any asymptotes. (4) 
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d) Sketch the graph of f(x) on the given axes.               (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 

[27] 
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QUESTION 7 

 

ABC is a semi-circle with centre M.  

ANC is a sector with centre A and  

corresponding arc NC. 

 

AM = 15cm, 
2

A MC


=  radians and MAC =  

 

 

 

 

 

a) Give a reason why 
4


 =  radians.          (1) 

 

 

 

 

b) Determine the area of the shaded region MNC. (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[7]  
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QUESTION 8 

A portion of the graph of 4 3( ) 5 2 1f x x x x= + − −  is shown below: 

 

 

 

 

 

 

 

 

Use the Newton-Raphson Method with an initial approximation of 1 to 

determine the x-coordinate of the local minimum shown above. Give your 

answer to 4 decimal places. (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[7] 
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BLANK PAGE for working out 



Page 20 of 27 
 

QUESTION 9 

The graph of the function ( ) ln(1 )f x x x= −  , x a  is shown below. 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 
a) Write down the value of a. (2) 
 
 
 
 
 
 
 
b) Sketch the following graphs. 

 
     You do not need to work out any values – simply show how the shape changes. 

 

  i) ( )y f x=    (4) 
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  ii)  ( )y f x=    (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  iii)  
1

( )
y

f x
=     (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[14] 
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QUESTION 10 

 

Consider  

2

1

3 3 3
( ) lim 2 2 2 2

b n

n
ia

i i
f x dx

n n n→
=

    
= + − + +    

     
   

 

a) Determine the values of a and b. (2) 

 

 

 

 

 

b) Write down the function ( )f x  (2) 

 

 

 

 

 

c) Calculate the area enclosed by the graph of f, the x-axis and the lines x = a  

and x = b.   (2) 

 

 

 

 

 

 

 

 

 

 

[6] 
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QUESTION 11 

a) Determine the following integrals: 

i) 
2 35 13x x dx−            (6) 

 

 

 

 

 

 

 

 

 

ii) cos3x x dx          (using integration by parts)     (8) 
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iii) 3 2cot .cosecx x dx          (6) 
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b) Given 
2

11
( )

2

x
f x

x x

− −
=

+ −
  

 

i) Decompose f(x) into partial fractions.      (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii) Hence determine 
2

11

2

x
dx

x x

− −

+ −        (4) 

 

 

 

 

 

 

 

 

 

[28] 
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QUESTION 12 

The loop 2 2( )y x a x= −   is shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The shaded region is rotated about the x-axis.  
 
Determine the volume of the solid formed by this rotation, in terms of a.   (10) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] 

 [Total: 200 marks] 
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