ST. DAVID'S MARIST INANDA

ADVANCED PROGRAMME MATHEMATICS

PRELIMINARY EXAMINATION PAPER 1: CALCULUS and ALGEBRA

GRADE 12

1 SEPTEMBER 2021

EXAMINER: MRS S RICHARI MODERATOR: MRS C KENN			MARKS: 200 TIME: 2 hours
NAME:			
Please put a cross next to you	r teacher's name:		
	Mrs Kennedy	Mrs Richard	
INSTRUCTIONS:			

- ✓ This paper consists of 27 pages and a separate 4-page formula sheet. Please check that your paper is complete.
- ✓ Please answer all questions on the Question Paper.
- ✓ You may use an approved non-programmable, non-graphics calculator unless otherwise stated. PLEASE ENSURE YOUR CALCULATOR IS IN **RADIAN** MODE.
- ✓ Round answers to 2 decimal places, unless stated otherwise.
- ✓ It is in your interest to show all your working details.
- ✓ Work neatly. Do NOT answer in pencil.
- ✓ Diagrams are not drawn to scale.

QUESTION	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	TOTAL
	[42]	[14]	[11]	[22]	[12]	[27]	[7]	[7]	[14]	[6]	[28]	[10]	[200]
LEARNER'S MARKS													

$$i) \qquad \left| \frac{3}{x-1} \right| = 12 \tag{4}$$

ii)
$$log(2x+1) - log(x-1) = 1$$
 State restrictions where necessary. (5)

b) The following formula models the number of years (t), from now, in terms of the number of people (P) that stay in a town at time t:

$$t = 100 \ln \left(\frac{4}{3} - \frac{P}{60000} \right)$$

i) Determine how many people initially live in the town when t = 0.
 (Without the use of a calculator and showing all working out.)

ii) As a result of migration to the cities, the town's population is decreasing.Calculate after how many years (to the nearest year) there will be no residents left in the town.(3)

Page	5	of	27
ı ugu	•	O.	

iii) Change the subject of the formula to P, hence write the formula as P = ...(5)

iv) Hence, or otherwise, determine the initial **rate** at which the population decreases (that is when t = 0 years). (5)

- c) Given $f(x) = (x-1)\ln(x-1)$ for x > 1 and $g(x) = e^x + 1$
 - i) Show that $f \circ g(x) = x \cdot e^x$ (4)

ii) Hence solve for x if $f \circ g(x) = 2x$ (5)

b) Determine the values of a and b, where a and b are real numbers that satisfy the

equation:
$$\frac{a+2i}{1-3i} \times bi = -7-i$$
 (6)

Prove by Mathematical induction that $8^n - 7n + 6$ is divisible by 7 for all $n \in \mathbb{N}$ (11)

\sim 1	JFS1		NI	A
w	JES I	1()	N	4

		Page 11 of 27
b) Determine:	$D_{x}\left[\left(\frac{3x-1}{2x+5}\right)^{5}\right]$	(6)

c) Determine the gradient of the tangent to the curve $3y^4 + 4x - x^2 \sin y - 4 = 0$ at the point P (1; 0) (8)

The function f(x) is defined as follows:

$$f(x) = \begin{cases} \frac{a}{x} & \text{if } x \ge 2 \\ b - 2x & \text{if } x < 2 \end{cases}$$

Determine the values of a and b if f(x) is **differentiable** at x = 2.

Justify your answer, using correct notation of limits. (12)

Given the function $f(x) = \frac{x^3 + 4x^2 + x - 6}{x^2 - 1}$

a) Determine the coordinates of the stationary points. (9)

	Page 15 of 27
b) Determine the intercepts with the axes.	(4)
c) Determine the equations of any asymptotes.	(4)
	. ,

Page **16** of **27**

d) Sketch the graph of f(x) on the given axes.

(10)

[27]

ABC is a semi-circle with centre M. ANC is a sector with centre A and corresponding arc NC.

AM = 15cm, $AMC = \frac{\pi}{2}$ radians and $MAC = \beta$

a) Give a reason why $\beta = \frac{\pi}{4}$ radians. (1)

b) Determine the area of the shaded region MNC.

(6)

A portion of the graph of $f(x) = x^4 + 5x^3 - 2x - 1$ is shown below:

Use the **Newton-Raphson Method** with an initial approximation of 1 to determine the **x-coordinate of the local minimum** shown above. Give your answer to 4 decimal places. (7)

	Page 19 of 27
BLANK PAGE for working out	

L

The graph of the function $f(x) = |x| \ln(1-x)$, x < a is shown below.

a) Write down the value of a.

(2)

b) Sketch the following graphs.

You do not need to work out any values – simply show how the shape changes.

$$i) y = |f(x)| \tag{4}$$

Page	21	of	27
ı ayc	4 I	Oi	Z I

ii)
$$y = f(|x|)$$

iii)
$$y = \frac{1}{f(x)}$$

Consider
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(2 + \frac{3i}{n} \right)^{2} - 2 \left(2 + \frac{3i}{n} \right) + 2 \right]$$

a) Determine the values of a and b. (2)

b) Write down the function f(x) (2)

c) Calculate the area enclosed by the graph of f, the x-axis and the lines x = a and x = b. (2)

a) Determine the following integrals:

i)
$$\int x^2 \sqrt{5x^3 - 13} \, dx$$
 (6)

ii)
$$\int x \cos 3x \, dx$$
 (using integration by parts) (8)

iii) $\int \cot^3 x \cdot \csc^2 x \, dx$ (6)

b) Given
$$f(x) = \frac{-x-11}{x^2+x-2}$$

i) Decompose f(x) into partial fractions.

ii) Hence determine
$$\int \frac{-x-11}{x^2+x-2} dx$$
 (4)

The loop $y^2 = x(a-x)^2$ is shown.

The shaded region is rotated about the x-axis.

Determine the volume of the solid formed by this rotation, in terms of a. (10)

[10]

[Total: 200 marks]

	Page 27 of 27
BLANK PAGE for	working out
© Original Artist Reproduction rights obtainable from www. CartoonStock.com MATH 1	<u> </u>
MATH I	NSTITUTE dx² KM
	yrchri D-tuz

Fill Control