Teacher:



#### **MATHEMATICS PAPER 2**

Time: 3 hours 150 marks

Examiners: Miss Eastes, Mrs. Jacobsz, Mrs. Dwyer

#### PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. Read the questions carefully. Answer all the questions.
- 2. Number your answers exactly as the questions are numbered.
- 3. You may use an approved, non-programmable, and non-graphical calculator, unless otherwise stated.
- 4. Round off your answers to **ONE DECIMAL PLACE**, where necessary unless otherwise indicated. All the necessary working details must be clearly shown.
- 5. It is in your own interest to write legibly and to present your work neatly.
- 6. Diagrams are not drawn to scale.

Name:

7. Please note that there is an information sheet provided.

| Marking G | Grid (for E      | ducators' ı | use only) |    |    |    |       |   |
|-----------|------------------|-------------|-----------|----|----|----|-------|---|
| QUES      | TION             | 1           | 2         | 3  | 4  | 5  | 6     | 7 |
| ACHIEVED  |                  |             |           |    |    |    |       |   |
| POSS      | SSIBLE 20 13 6 8 |             |           | 9  | 8  | 15 |       |   |
| 8         | 9                | 10          | 11        | 12 | 13 | 14 | Total |   |
|           |                  |             |           |    |    |    |       |   |
| 25        | 11               | 13          | 7         | 6  | 4  | 5  | 150   |   |

# **SECTION A**

# **Question 1**

1.1 In the diagram, A is the point (0;4) and B is the point (4;12).

The straight line CAT has a gradient of  $\frac{1}{3}$ .

KAB is a straight line.



Determine:

| 1.1.1 C | CÎX | (2) |
|---------|-----|-----|
|         |     |     |

| 1.1.2 | 1.1.2 BÂC, giving reasons.             |  |  |  |  |
|-------|----------------------------------------|--|--|--|--|
|       |                                        |  |  |  |  |
|       |                                        |  |  |  |  |
|       |                                        |  |  |  |  |
|       | ······································ |  |  |  |  |
|       |                                        |  |  |  |  |
|       |                                        |  |  |  |  |
|       |                                        |  |  |  |  |

1.2 In the diagram P(5;2),Q(1;-1) and R(9;-5) are the vertices of the triangle PQR. It is also given that  $PW \perp QR$ . P(5; 2)O Q(1;-1)R(9; -5)Calculate: (2) 1.2.1 the length of QR (leave answer in simplest surd form) 1.2.2 the equation of QR (4) 1.2.3 the equation of the line PW (3)

| 1.2.4 the coordinates of W                              |                    |     |
|---------------------------------------------------------|--------------------|-----|
|                                                         |                    |     |
|                                                         |                    |     |
|                                                         |                    |     |
| estion 2                                                |                    |     |
| In the diagram, P is the point (2; $-2\sqrt{3}$ ). Refl | ex XÔP = A.        |     |
| <b>4</b>                                                |                    |     |
| У                                                       |                    |     |
|                                                         |                    |     |
| 0                                                       | x                  |     |
|                                                         |                    |     |
|                                                         |                    |     |
| ↓                                                       | $P(2; -2\sqrt{3})$ |     |
| Determine, leaving your answers in surd form            |                    |     |
| 2.1.1 the length of OP                                  |                    | (2) |
|                                                         |                    |     |
|                                                         |                    |     |
|                                                         |                    |     |
|                                                         |                    |     |

(4)

| cos 47° cos (360° + x)                    |  |
|-------------------------------------------|--|
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
| Solve for x (without using a calculator): |  |
|                                           |  |
| $\sin x = -\sin 50^{\circ}$               |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |

2.2

Simplify (without using a calculator):

The graphs of  $f(x) = \cos(x + a)$  and  $g(x) = \sin bx$  are shown above for  $x \in [-90^\circ; 180^\circ]$ .



3.1 Determine:

3.1.2 the value of b (1)

3.1.2 the value of b

3.1.3 the amplitude of f (1)

3.1.4 the period of g (1)

3.2 If g is moved down 2 units, what will its equation change to? (2)

\_\_\_\_\_\_ [6]

In the figure below, FE is a tangent to the circle with centre O. D and F are joined so that EG = GF.



4.1 If  $\hat{E}_3 = x$ , name, with reasons, two other angles each equal to x. (3)

- 4.2 Prove that DE = EF. Give reasons for your answers (1)
- 4.3 Express DÔE in terms of x. Give reasons for your answers (4)

\_\_\_\_\_\_\_[8]

In the figure below: TP and TS are tangents to the circle. R is a point on the circle and SR and PR are joined. Q is a point on PR so that  $\hat{P}_1 = \hat{Q}_1$ . S and Q are joined



Prove that:

| 1 | TQ // SR (Give reasons for your answers)                        |  |  |  |  |
|---|-----------------------------------------------------------------|--|--|--|--|
| _ |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
| _ |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   | QPTS is a cyclic quadrilateral. (Give reasons for your answers) |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |
|   |                                                                 |  |  |  |  |

| 5.3 T | Q bisects SQP. (Give reasons for yoru answers)                                  |
|-------|---------------------------------------------------------------------------------|
|       |                                                                                 |
|       |                                                                                 |
| uest  | on 6                                                                            |
| ne he | ights (in cm) of a group of basketball players are recorded as follows:         |
| 178;  | 184; 186; 186; 192; 194; 195; 195; 197; 198; 201                                |
| 6.1   | Determine the mean height of the players.                                       |
| 5.2.1 | Determine the standard deviation.                                               |
| 5.2.2 | Determine the interval of the heights within one standard deviation of the mean |
| 6.2.3 | Determine the percentage of players, whose heights, are within one              |

The following frequency table shows the distribution of the marks of 200 students in a Mathematics test out of 60.

| Mathematics Mark                 | Frequency | Cumulative frequency |
|----------------------------------|-----------|----------------------|
| <b>0</b> ≤ <i>x</i> ≤ <b>10</b>  | 20        |                      |
| <b>10</b> < <i>x</i> ≤ <b>20</b> | 40        |                      |
| <b>20</b> < <i>x</i> ≤ <b>30</b> | 60        |                      |
| $30 < x \le 40$                  | 50        |                      |
| <b>40</b> < <i>x</i> ≤ <b>50</b> | 20        |                      |
| $50 < x \le 60$                  | 10        |                      |

- 7.1 Complete the cumulative frequency table in the space provided (1)
- 7.2 Draw the cumulative frequency ogive on the grid below (3)



| 7.3 | 3 Use your graph to estimate the interquartile range. |       |         |        |        |       |       | -                             | (3)    |        |       |        |       |       |                       |     |
|-----|-------------------------------------------------------|-------|---------|--------|--------|-------|-------|-------------------------------|--------|--------|-------|--------|-------|-------|-----------------------|-----|
| 7.4 |                                                       | -     |         |        |        |       |       | eed to                        |        | te the | test. |        |       |       | -                     | (2) |
| 7.5 | The                                                   | e tea | cher fo | ound t | hat th | e mar | ks we | n of the<br>ere too<br>ew sta | low.   | He ad  | ded 2 | 0 to e | ach m | nark. | cores.                | (2) |
| 7.6 |                                                       | า two |         |        | hools  |       | _     |                               | t out  | _      |       |        |       |       | ers each<br>uestions: |     |
|     |                                                       | Sc.   | hool B  | 10     | 15     | 20    | 25    | <br>30<br>Marks               | 35     | 40     | 45    | 50     | 55    | 60    |                       |     |
|     | 7.6.1                                                 |       | What    | perce  | ntage  | of Sc | hool  | <i>marкs</i><br>B's res       | ults w | vere a | bove  | 55 out | of 60 | )     | (1                    | 1)  |
|     | 7.6.2                                                 |       |         |        |        |       |       | verall re                     |        |        |       |        |       | ,     | (3                    | 3)  |
|     |                                                       |       |         |        |        |       |       |                               |        |        |       |        |       |       | -<br>-<br>- [1        | 15] |

# **SECTION B**

# **Question 8**

| 1                                 | <u> </u>                                         | tan <b>2A</b>                                                                           |
|-----------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|
| cos A – sin A                     | $+\frac{1}{\cos \mathbf{A} + \sin \mathbf{A}} =$ | sin <b>A</b>                                                                            |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
|                                   |                                                  |                                                                                         |
| 1 Show that the<br>You may not us | e equation 2cos $\theta$ = se your calculator.   | = $\sin(\theta + 30^{\circ})$ is equivalent to $3 \cos \theta = \sqrt{3} \sin \theta$ . |
| 1 Show that the You may not us    | e equation 2cos $\theta$ = se your calculator.   | = $\sin(\theta + 30^\circ)$ is equivalent to $3\cos\theta = \sqrt{3}\sin\theta$ .       |
| 1 Show that the You may not us    | equation 2cos $\theta$ = se your calculator.     | = $\sin(\theta + 30^\circ)$ is equivalent to $3\cos\theta = \sqrt{3}\sin\theta$ .       |
| 1 Show that the You may not us    | e equation 2cos θ =<br>se your calculator.       | = $\sin(\theta + 30^\circ)$ is equivalent to $3\cos\theta = \sqrt{3}\sin\theta$ .       |
| 1 Show that the You may not us    | e equation 2cos θ =<br>se your calculator.       | = $\sin(\theta + 30^\circ)$ is equivalent to $3 \cos \theta = \sqrt{3} \sin \theta$ .   |
| .1 Show that the                  | e equation 2cos θ = se your calculator.          | = $\sin(\theta + 30^\circ)$ is equivalent to $3\cos\theta = \sqrt{3}\sin\theta$ .       |
| 1 Show that the You may not us    | equation 2cos θ = se your calculator.            | = $\sin(\theta + 30^\circ)$ is equivalent to $3\cos\theta = \sqrt{3}\sin\theta$ .       |
| 1 Show that the You may not us    | e equation 2cos θ =<br>se your calculator.       | = sin(θ+ 30°) is equivalent to 3 cos θ = $\sqrt{3}$ sin θ.                              |
| .1 Show that the You may not us   | e equation 2cos θ = se your calculator.          | = sin(θ+ 30°) is equivalent to 3 cos θ = $\sqrt{3}$ sin θ.                              |

| 8.2.2 | Now calculate $\theta$ if $\theta \in [-180^{\circ}]$ : | 180° |
|-------|---------------------------------------------------------|------|

| 1 | _ | ١ |
|---|---|---|
| ( | ວ | ) |

[25]

8.3 ABD is a triangle in the horizontal plane. BC is a pole perpendicular to this plane. AD = BD.

The angle of elevation from A to C is  $\alpha$  and  $\hat{ADB} = 2\alpha$ .

Prove that AD = 
$$\frac{h \cos \alpha}{2 \sin^2 \alpha}$$



### **QUESTION 9**

In the given figure, AOB is the diameter of the semi-circle, centre O, MO // NB, ON and MB intersect at K and  $\hat{B}_1 = x$ .



| .2 | Express the following in terms $x$ . (Give reasons for your answers) 9.2.1 $\stackrel{\circ}{\mathrm{M}}\stackrel{\circ}{\mathrm{K}}\mathrm{N}$ | (2  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | 9.2.2 $\widehat{M}_1$                                                                                                                           | (1) |

| 9.3 | If $x = 30^{\circ}$ , can | alculate the siz | zes of the angle | s of $\Delta$ MKN. (G | ive reasons for yo | ur answers) | (4) |
|-----|---------------------------|------------------|------------------|-----------------------|--------------------|-------------|-----|
|     |                           |                  |                  |                       |                    |             |     |
|     |                           |                  |                  |                       |                    |             |     |
|     |                           |                  |                  |                       |                    |             |     |

[11]

10.1 A circle, with centre M, is defined by the equation  $(x+6)^2 + (y+1)^2 = 20$ . A tangent is drawn, touching the circle at B (a; b). The equation of this tangent is 2y + x - 2 = 0.



| 10.1.1 | Determine the gradient of the tangent? | (           | (1) |
|--------|----------------------------------------|-------------|-----|
|        |                                        | <del></del> |     |

| 10.1.2 | 2 Show that B(-4; 3) |  | (6)  |
|--------|----------------------|--|------|
|        |                      |  | <br> |
|        |                      |  | <br> |
|        |                      |  |      |
|        |                      |  | <br> |
|        |                      |  |      |
|        |                      |  | <br> |

10.2 Two circles with centre O(0; 0) and M(a; b) touch externally at B. The equation of the smaller circle with centre O is  $x^2 + y^2 = 16$ . Circle centre M touches the y-axis at C(0; -8).

Determine the co-ordinates of M. (6)



|      |      |      | <del></del> |
|------|------|------|-------------|
|      |      | <br> |             |
| <br> |      | <br> |             |
| <br> | <br> | <br> |             |
|      | <br> | <br> |             |
|      |      |      |             |
|      |      |      |             |
|      |      |      |             |
|      |      | <br> |             |
|      |      |      |             |
| <br> |      | <br> |             |
| <br> |      | <br> |             |
|      |      | <br> |             |
|      |      |      |             |
|      |      |      | <br>[13]    |
|      |      |      | [13]        |

### **QUESTION 11**

Three circles are sketched below, with centres A, B and C respectively.

The equation of the first, centred at A, is  $x^2 + y^2 - 4x + 6y + 12 = 0$ .

Note: The radius of the circle, centred at B, is 1 unit greater than the circle centred at A and the radius of the circle, centred at C (p; q), is 1 unit greater than the circle centred at B. Each circle centre is shifted 1 unit right and then 1 unit up to determine the next circle centre.



| 11.1 | Determine the radius and the coordinates of the centre of the circle centred at A. |  |  |  |  |  |
|------|------------------------------------------------------------------------------------|--|--|--|--|--|
|      |                                                                                    |  |  |  |  |  |
|      |                                                                                    |  |  |  |  |  |
|      |                                                                                    |  |  |  |  |  |
|      |                                                                                    |  |  |  |  |  |
|      | <del></del>                                                                        |  |  |  |  |  |

11.2 Determine the equation of the circle, centred at C, in the form:

$$(x-p)^2 + (y-q)^2 = r^2$$
 (4)

[7]

Two circles intersect at A and B. AC is a tangent to circle ABD at A and AD is a tangent to the circle ACB at A. Straight line CEFD intersects the circles at E and F. AE = AF.



| 12.1 | Prove: | $\Delta ACE /\!/\!/ \Delta DAF$ | (Give reasons for your answers) | (3) |
|------|--------|---------------------------------|---------------------------------|-----|
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| _    |        |                                 |                                 |     |
| 12.2 | Show:  | AC.DF = AD.AF                   | (Give reasons for your answers) | (3) |

[6]

In the figure below,  $\triangle ABC$  has D and E on BC, BD = 6cm and DC = 9cm.

AT : TC = 2 : 1 and AD // TE.



| 13.1 | Write down the numerical value of $\frac{CE}{ED}$ | (Give reasons for your answers) | (2) |
|------|---------------------------------------------------|---------------------------------|-----|
|------|---------------------------------------------------|---------------------------------|-----|

| 13.2 | Show that D is the midpoint of BE. |  |      |  |  |  |
|------|------------------------------------|--|------|--|--|--|
| _    |                                    |  | <br> |  |  |  |
| _    |                                    |  |      |  |  |  |

[4]

O is the centre of the circle with radius = 1 unit. OD  $\perp$  AB at C. DC = p.  $\hat{O}_1=\hat{O}_2=\theta$  .



Giving reasons for your answers, prove that:

| 14.1 | $p = 1 - \cos \theta$ | (3) |
|------|-----------------------|-----|
|      |                       |     |

| _ | <br> | <br> | <br> | <br> |  |
|---|------|------|------|------|--|
|   |      |      |      |      |  |
|   |      |      |      |      |  |
|   | <br> | <br> | <br> | <br> |  |

14.2 
$$AB = 2 \sin \theta$$
 (2)

[5]