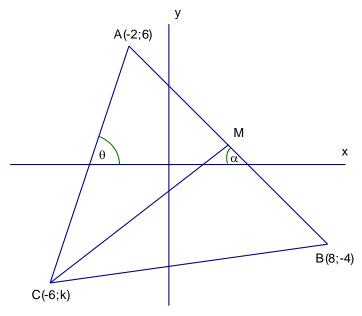
ST. DAVID'S MARIST INANDA

MATHEMATICS PRELIMINARY EXAMINATION PAPER 2

GRADE 12 13 September 2017

EXAMINER: MRS S RICHARD MODERATOR: MRS C KENNEDY				MARKS: 150 TIME: 3 hours
NAME:				
PLEASE PUT A	CROSS NEXT	TO YOUR TEAC	HER'S NAME:	
Mrs Kennedy	Mrs Nagy	Mr Vicente	Mrs Richard	Mrs Black

INSTRUCTIONS:


- ✓ This paper consists of 24 pages and a separate 2 page information sheet. Please check that your paper is complete.
- ✓ Please answer all questions on the Question Paper.
 ✓ You may use an approved non-programmable, non-graphics calculator unless otherwise
- ✓ It is in your interest to show all your working details and give valid reasons where necessary.
- ✓ Reasons for all Geometry must be clearly stated.
- ✓ Work neatly. Do NOT answer in pencil.
- ✓ Diagrams are not drawn to scale.

SECTION A	Q1	Q2	Q3	Q4	Q5	SUB-TOTAL		
	[17]	[21]	[19]	[9]	[9]	[75]		
LEARNER'S MARKS								
SECTION B	Q6	Q7	Q8	Q9	Q10	Q11	Q12	SUB-TOTAL
	[13]	[11]	[13]	[19]	[4]	[10]	[5]	[75]
LEARNER'S MARKS								

SECTION A

QUESTION 1

In the diagram below, A(-2;6), B(8;-4) and C(-6;k) are three points in the Cartesian plane with point M the midpoint of AB and AB = BC.

a) Determine the coordinates of M. (2)

b) Determine the value(s) of k. (6)

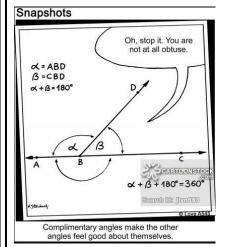
		Page 3 of 24
c)	Hence, determine the equation of the line CM if $k = -6$.	(3)
d)	Determine the value of:	
	i) θ if $k = -6$	(2)
	ii) α	
		(2)
	iii) <i>CÂB</i>	(2)

[17]

a) Show that

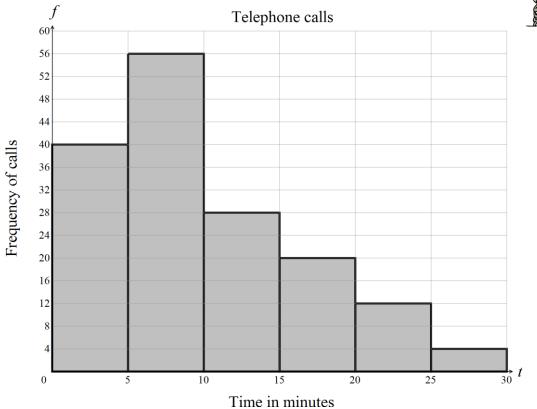
$$\frac{\sin(90^{\circ} + x) \cdot \cos x \cdot \tan(-x) \cdot \sin(x - 180^{\circ})}{\cos(180^{\circ} + x) \cdot \sin(540^{\circ} + x)} = \sin x$$
(6)

b) i) Given:
$$sin x = cos 2x - 1$$


Show that
$$2sin^2x + sinx = 0$$
 (1)

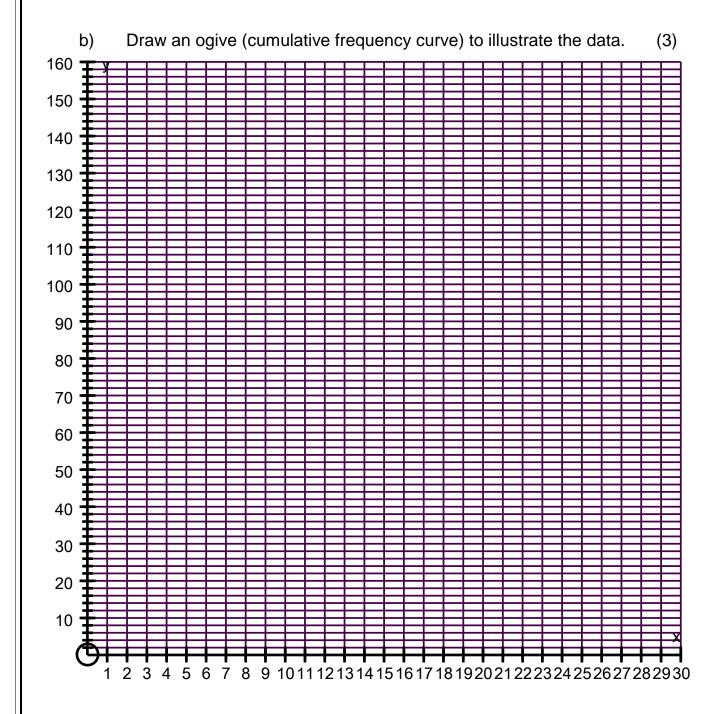
ii) Determine the general solution of
$$sinx = cos2x - 1$$
 (6)

c) If $sin28^{\circ} = a$ and $cos32^{\circ} = b$, determine the following in terms of a and b.


ii)
$$cos64^{\circ}$$
 (2)

iii)
$$sin4^{\circ}$$
 (4)

[21]



The diagram above shows a histogram for the lengths of telephone calls.

a) Complete the frequency table for the data.

(3)

Time in minutes	Frequency	Class midpoint	Cumulative frequency
$0 \le x < 5$	40	2.5	40
$5 \le x < 10$			
$10 \le x < 15$			
$15 \le x < 20$			
$20 \le x < 25$			
$25 \le x < 30$			

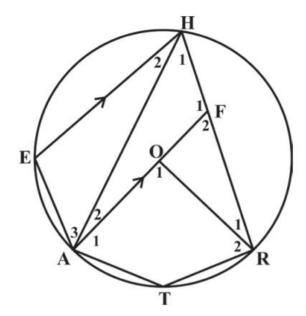
c) Use your ogive (cumulative frequency curve) to answer the questions below:

i) State the median length of a phone call. (1)

ii) What is the interquartile range? (3)

iii) What percentage of phone calls last for 20 minutes or longer? (2)

d)	Use the frequency distribution associated with your histogram to
	estimate


i) the mean length of a call. (2)

ii) the standard deviation of a call. (2)

e) Use your ogive and the your answer to d)ii) to determine the number of calls which lie within one standard deviation of the mean. (3)

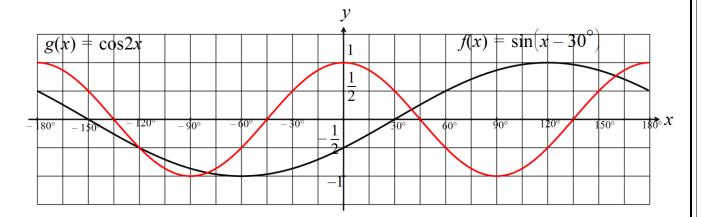
[19]

In the diagram O is the centre of the circle HEATR. AOF is parallel to EH.

$$\widehat{F}_2=78^\circ$$
 and $\widehat{R}_1=22^\circ$

Calculate, with reasons, the size of:

a)
$$\hat{O}_1$$


b)
$$\widehat{H}_1$$

c)
$$\hat{T}$$
 (2)

d)
$$\widehat{H}_2$$

The graph shows the curves of:

$$f(x) = \sin(x-30^{\circ})$$
 and $g(x) = \cos 2x$ for $x \in [-180^{\circ};180^{\circ}]$

Answer the following questions with the aid of the graph.

a) What is the period of the graph of
$$g(\frac{1}{4}x)$$
? (1)

b) State the amplitude of the graph of
$$h$$
 if $h(x) = \frac{g(x)}{2}$. (1)

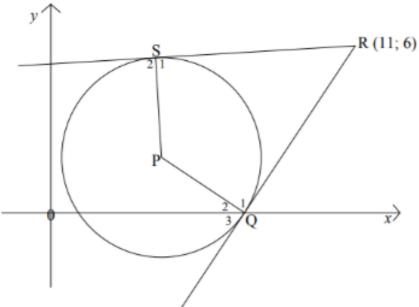
c) How many solutions does the equation:

$$\sin(x-30^{\circ}) = \cos 2x$$
 have if $x \in [-180^{\circ}; 180^{\circ}]$? (1)

d) For which value(s) of x is $\cos^2 x = \sin^2 x$ if $x \in [0^0; 180^0]$? (show how the graph above can be used to answer this question) (3)

e) For which value(s) of x is $2\cos 2x \cdot \sin(x-30^0) \ge 0$ if $x \in [0^0; 180^0]$? (3)

[9]

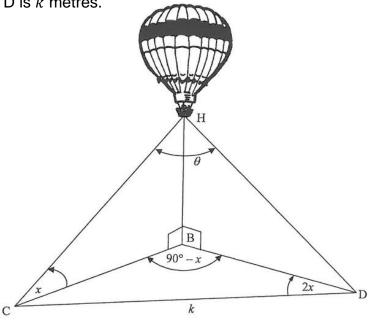

"I find if you put that slash through the equal sign, the number of possible answers vastly increases." [Total Section A: 75 marks]

SECTION B

QUESTION 6

A circle centre P and radius PQ is sketched with Q on the x-axis.

QR and SR are tangents to the circle at Q and S respectively, intersecting at R(11;6)



a) If the circle defined by $x^2 - 8x + y^2 - 4y = -7$, determine the coordinates of the centre P, and the length of the radius PQ, leaving your answers in surd form. (4)

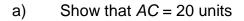
b) Prove that the quadrilateral PQRS is cyclic, stating reasons. (4)

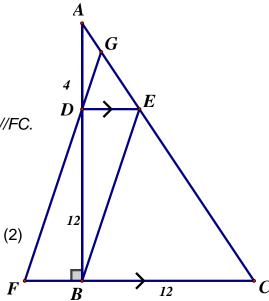
	Page 13 of 24
c) Determine the length of RS, leaving your answer in surd form.	(5)
	[13]
ISN'T IT AMAZING HOW SOME PEOPLE WILL JUST GO OFF ON TANGENTS!	
Range Control of the	

A hot-air balloon H is directly above point B on the ground. Two ropes are used to keep the hot-air balloon in position. The ropes are held by two people on the ground at point C and point D. B,C and D are in the same horizontal plane. The angle of elevation from C to H is x. $C\widehat{D}B = 2x$ and $C\widehat{B}D = 90^{\circ} - x$. The distance between C and D is k metres.

a) Show that
$$CB = 2k \sin x$$
. (4)

b) Hence, show that the length of rope HC is
$$2k \ tanx$$
. (3)


Page 15 o	of 24
c) If $k=40m$, $x=23^{\circ}$ and $HD=31.8$ m , calculate θ , the angle between the two ropes, to 2 decimal places.	(4)
	[11]


Refer to the diagram (not drawn to scale):

In the diagram $\triangle ABC$ is a right-angled triangle.

The point D lies on AB and E lies on AC such that DE//FC.

BC = 12 units, AD = 4 units and DB = 12 units.

b) Calculate, stating reasons, the size of:

(3)

2) *EC*

(1)

(3)

- c) It is further given that: $GE = 3\frac{3}{4}$ units.
 - i) Determine the length of DE.

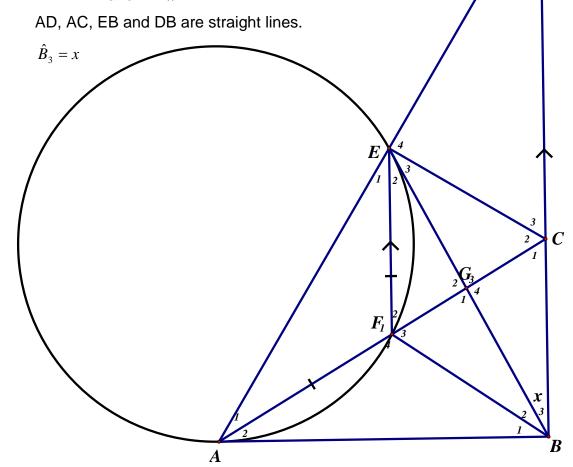
ii) Hence, or otherwise, prove that DEBF is a parallelogram. (4)

[13]

"So, for every day that your math grade stays

 \boldsymbol{D}

QUESTION 9


a) Complete the statement:

A line parallel to one side of triangle (2)

b) In the diagram alongside:

AB and BE are tangents to the circle.

AF = FE and EF//DB

i) Complete:
$$\frac{AF}{FC} = \dots$$
 (1)

		Page 19 of 24
ii)	With reasons, write down 5 other angles equal to x.	(5)
iii)	Prove that AECB is a cyclic quadrilateral.	(2)
,	1 10vo triat / 1205 to a 0,000 quadrilatoral.	\ - /
iv)	Prove that $\Delta ACB / / \Delta DAB$	(3)
14)	1 Tove that Ancom Adam	(0)
v)	Hence, deduce that $AB^2 = DB.CB$	(2)

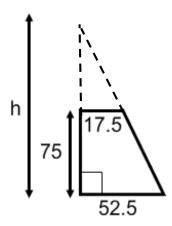
Page	20	of	24
- 450		01	

vi) Is EC a tangent to the circle passing through E, G and A? Give a reason. (4)

[19]

QUESTION 10

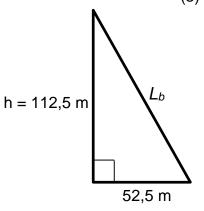
If sinB + cosB = 1,2, evaluate, without using a calculator sinBcosB. (4)

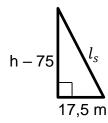

The Metropolitan Cathedral in Rio de Janeiro is a conical frustrum with height 75m, base diameter 105m and top diameter 35m.

Formulas you may need:

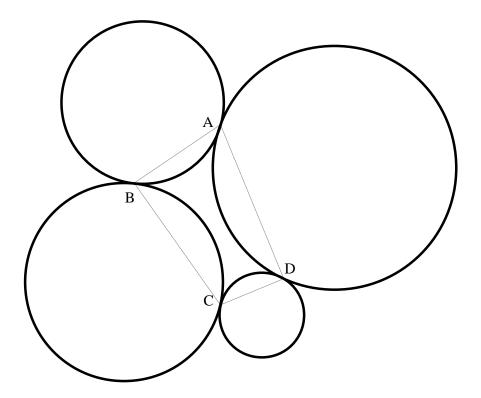
$$V = \frac{1}{3}\pi r^2 h$$

$$SA = \pi r l + \pi r^2$$


The diagram below shows the longitudinal cross-section of the building:


a) Show that
$$h = 112,5m$$

(3)


b) Calculate the slant length of the large cone, L_b , in metres. Leave your answer in surd form. (3)

c) If the slant length of the smaller cone (that has been removed), $l_s = \sqrt{1712.5}$ m, calculate the surface area of the frustum-shaped building in m² (do <u>not</u> include the circular base or roof of the building). (4)

Four circular coins of unequal sizes lie on a table so that each coin touches two, and only two, of the others. Prove that the four points of contact, ABCD are concyclic. (5)

Page **24** of **24**

[Total Section B: 75 marks]

[Total: 150 marks]